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Abstract 

Electromicrofiltration, where an external electric field is imposed on a traditional 

microfiltration unit, has been studied for several years. Reports in this field have covered the 

filtering separation of china clay, kaoline, anatase and a surfactant from water. Some recent 

investigations concerning the utilization of electromicrofiltration for bioseparations has led to 

a growing interest in applying this method to dairy processing. The objective of this work was 

to explore the characteristics of an electromicrofiltion unit and examine the potential of 

utilizing this for mineral (calcium phosphate) removal in the dairy industry. Two stainless 

steel  membranes with nominal pore sizes of 5µm and 25µm, respectively, were used in this 

study. This material provides the membrane with some unique properties such as electrical 

conductivity; resistance to high pressure operation and backflushing; and resistance to 

chemical cleaning agents. Alamin particles, a by-product separated from whey, was used as 

the primary feed particle. The average particle size is about 5µm and the chemical 

composition is mainly calcium phosphate.  Another particle, calcite (calcium carbonate),  was 

used for comparison.  Experiments were performed on a laboratory electromicrofilter (the 

tubular membrane dimension is 380mm in length and 13.5mm in diameter)  in which the 

voltage(0-50V) and current (0-3A), transmembrane pressure (0-250kPa), and crossflow 

velocity (0-3m/s) could  be measured and controlled.  

Between 20% ~ 100% transient improvement in permeate flux was obtained when an electric 

field was applied. For example, the permeate flux increased from 120LMH to 165LMH  at the 

condition of 50kPa transmembrane pressure, 36V/cm electric field strength and 2.28m/s 

crossflow velocity, in which the membrane was negatively charged and the solution was 

pH=7. This polarity was used because the zeta potentials for  most of the colloid or particulate 

material in the dispersed system are generally negative in the normal pH range (pH=4~8). The 

permeate flux gain was largely voltage and particle concentration dependent. The principle of 

this was further studied and two  mechanisms influencing flux were identified: (1) the 

electricstatic repulsion to the particles or colloids by the charged membrane; and (2) the 

displacing effect of the cathodic gas bubble on the deposited particles. Microscopic 
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examination showed that the electrophoretic speed of Alamin particles around  1µm in size 

under 36V/cm electric strength was ~43µm/s.  However, continuous application of the electric 

field was found  raised the permeate to pH 11 or higher;  this appeared  to reduce the 

solubility of calcium salt in the solution, and eventually caused more severe fouling as fine 

particles precipitated and obstructed the membrane. Therefore pulsatile application of electric 

field is recommended.  On the other hand, formation of the gas bubbles caused an additional 

false permeate increase of about 25(LMH)  for a 1A membrane current in this 

electromicrofiltration unit.  

Using a positively charged membrane, in contrast, acidified the permeate to pH 3~3.5 and 

resulted in dissolution of the deposited calcium salts. For this reason the steady state permeate 

flux was improved. For example, the permeate flux for the Alamin solution (0.7%w/v) was 

103(LMH) at 100 mins after filtration start if no electric field was applied, but at the same 

condition the permeate flux was 190(LMH) if the membrane was positively charged at 

33V/cm field strength. However, the anodic corrosion was evident if chloride ion (Cl- ) was 

proved above a minimal valum in the solution. This hamful aspect had been emphsised in this 

research,  and the use of a titanium anode is suggesed to avoid corrosion in the future studies. 

Moreover, anodic oxidation and its potential to change the chemical nature of the filtrated 

substance must be take into consideration when applying electriofiltration in a bioseparation 

processes. 

A hydrodynamic analysis revealed that the flow pattern over the whole membrane module was 

fully developed turbulent flow at 2.28m/s crossflow velocity. The thickness of the laminar 

sub-layer on the membrane wall was about 81µm, which is roughly one order larger than the 

mean particle size in this study. The drag force acting on a deposit particle was estimated as 

2.33×10-9 (N), which  is 230 times higher than the static electric field force, and the electric 

field repulsing force acting on a deposit mean size particle is 9 times higher than the particle 

self weight. The sum of these forces inhibited the particle from depositing on the membrane 

surface. Considering that the nominal membrane pore sizes used (5µm and 25µm, 

respectively) was relatively large (around 0.2-1µm only for normal MF) and the particle size 
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distribution, the fouling mechanism is more likely to be pore plugging rather than the cake 

formation on the surface.  

Investigation of cleaning methods showed that the effectiveness of backflushing was basically 

pressure dependent. A 30kPa backflushing pressure restored 85% of filtration performance 

for the 25µm membrane; and a stop-and-restart operation( in which about 15mm H2O column 

backpressure was provided by the permeate) restored approximately 60% of its filtration 

performance. However over 250kPa backflush pressure was needed to restore 85% of 

filtration performance on the 5µm membrane. Use of  backflushing can greatly reduce the 

consumption of chemical cleaners and it is recommended the membrane be charged as an 

anode when performing the backflushing operation. This can be an effective alternative to 

acid cleaning if the backflushing water has less than 0.1ppm chloride ion content.  

 Lastly the formation of the cathode deposit on the membrane as the electric field was applied 

was observed to act as  a ‘formed-in-place’ dynamic filtering layer, and  its potential  

application may be worth investigation in a future study. 

 Keyword: membrane; sintered stainless steel; microfiltration; electrofiltration; separation; 
electric field; dairy processing 
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