Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ELECTROMICROFILTRATION FOR SEPARATION OF MINERAL PARTICLES IN DAIRY PROCESSING

A thesis presented in partial fulfillment of the requirement for the degree of

MASTER OF TECHNOLOGY

in

FOOD ENGINEERING

In the Institute of Food, Nutrition & Human Health,

Massey University, Albany campus,

New Zealand

By

Frank G.uan Feng Qin

June 1999

Abstract

Electromicrofiltration, where an external electric field is imposed on a traditional microfiltration unit, has been studied for several years. Reports in this field have covered the filtering separation of china clay, kaoline, anatase and a surfactant from water. Some recent investigations concerning the utilization of electromicrofiltration for bioseparations has led to a growing interest in applying this method to dairy processing. The objective of this work was to explore the characteristics of an electromicrofiltion unit and examine the potential of utilizing this for mineral (calcium phosphate) removal in the dairy industry. Two stainless steel membranes with nominal pore sizes of 5μ m and 25μ m, respectively, were used in this study. This material provides the membrane with some unique properties such as electrical conductivity; resistance to high pressure operation and backflushing; and resistance to chemical cleaning agents. Alamin particles, a by-product separated from whey, was used as the primary feed particle. The average particle size is about 5µm and the chemical composition is mainly calcium phosphate. Another particle, calcite (calcium carbonate), was used for comparison. Experiments were performed on a laboratory electromicrofilter (the tubular membrane dimension is 380mm in length and 13.5mm in diameter) in which the voltage(0-50V) and current (0-3A), transmembrane pressure (0-250kPa), and crossflow velocity (0-3m/s) could be measured and controlled.

Between 20% ~ 100% transient improvement in permeate flux was obtained when an electric field was applied. For example, the permeate flux increased from 120LMH to 165LMH at the condition of 50kPa transmembrane pressure, 36V/cm electric field strength and 2.28m/s crossflow velocity, in which the membrane was negatively charged and the solution was pH=7. This polarity was used because the zeta potentials for most of the colloid or particulate material in the dispersed system are generally negative in the normal pH range (pH=4~8). The permeate flux gain was largely voltage and particle concentration dependent. The principle of this was further studied and two mechanisms influencing flux were identified: (1) the electric repulsion to the particles or colloids by the charged membrane; and (2) the displacing effect of the cathodic gas bubble on the deposited particles. Microscopic

examination showed that the electrophoretic speed of Alamin particles around 1 μ m in size under 36V/cm electric strength was ~43 μ m/s. However, continuous application of the electric field was found raised the permeate to pH 11 or higher; this appeared to reduce the solubility of calcium salt in the solution, and eventually caused more severe fouling as fine particles precipitated and obstructed the membrane. Therefore pulsatile application of electric field is recommended. On the other hand, formation of the gas bubbles caused an additional false permeate increase of about 25(LMH) for a 1A membrane current in this electromicrofiltration unit.

Using a positively charged membrane, in contrast, acidified the permeate to pH 3~3.5 and resulted in dissolution of the deposited calcium salts. For this reason the steady state permeate flux was improved. For example, the permeate flux for the Alamin solution (0.7% w/v) was 103(LMH) at 100 mins after filtration start if no electric field was applied, but at the same condition the permeate flux was 190(LMH) if the membrane was positively charged at 33V/cm field strength. However, the anodic corrosion was evident if chloride ion (Cl⁻) was proved above a minimal valum in the solution. This hamful aspect had been emphsised in this research, and the use of a titanium anode is suggesed to avoid corrosion in the future studies. Moreover, anodic oxidation and its potential to change the chemical nature of the filtrated substance must be take into consideration when applying electriofiltration in a bioseparation processes.

A hydrodynamic analysis revealed that the flow pattern over the whole membrane module was fully developed turbulent flow at 2.28m/s crossflow velocity. The thickness of the laminar sub-layer on the membrane wall was about 81μ m, which is roughly one order larger than the mean particle size in this study. The drag force acting on a deposit particle was estimated as 2.33×10^{-9} (N), which is 230 times higher than the static electric field force, and the electric field repulsing force acting on a deposit mean size particle is 9 times higher than the particle self weight. The sum of these forces inhibited the particle from depositing on the membrane surface. Considering that the nominal membrane pore sizes used (5µm and 25µm, respectively) was relatively large (around 0.2-1µm only for normal MF) and the particle size

distribution, the fouling mechanism is more likely to be pore plugging rather than the cake formation on the surface.

Investigation of cleaning methods showed that the effectiveness of backflushing was basically pressure dependent. A 30kPa backflushing pressure restored 85% of filtration performance for the 25 μ m membrane; and a stop-and-restart operation(in which about 15mm H₂O column backpressure was provided by the permeate) restored approximately 60% of its filtration performance. However over 250kPa backflush pressure was needed to restore 85% of filtration performance on the 5 μ m membrane. Use of backflushing can greatly reduce the consumption of chemical cleaners and it is recommended the membrane be charged as an anode when performing the backflushing operation. This can be an effective alternative to acid cleaning if the backflushing water has less than 0.1ppm chloride ion content.

Lastly the formation of the cathode deposit on the membrane as the electric field was applied was observed to act as a 'formed-in-place' dynamic filtering layer, and its potential application may be worth investigation in a future study.

Keyword: membrane; sintered stainless steel; microfiltration; electrofiltration; separation; electric field; dairy processing

Acknowledgments

First and foremost I wish to thank my supervisor John Mawson for his direction and encouragement over the last one and half years. His scrupulousness and experience benefited me a lot.

I also wish to acknowledge Industrial Research Limited (NZ) for the sponsorship of this project and my study.

Designing and establishing a suitable experimental apparatus is an important job for scientific research. The equipment used in this study was setup by the engineers in Messay University; the sintered stainless steel membranes were provided by Industrial Research Limited (NZ); and the filtration substance — 'Alamin' was supplied by the NZ Dairy Board. I would like to thank all those people who had given so much assistance. They are greatly appreciated.

This research work was carried out in the microbiology laboratory of Massey University, Albany campus. The laboratory technician Miss Joann Smith gave a lot assistance for the routine laboratory work. Dr. Jayantha Wimalasena, the technician of the chemistry laboratory, helped me obtain chemicals when needed, and Mr. Joe Wang, the technician of the Physics Department, used his skill to fix problems and give advice on what I planed to do. These impacts benefited me a lot. The research would have not been completed without their help.

I would like to thank Mr. John Evans for his help and communication to improve my understanding to the work and study environment.

I also wish to thank my friend Mr. Anthony W.Y. Wu and his wife Ms. Dang Ming Chen for their time, understanding and encouragement to my study.

Finally, to my wife Wanny and my daughter Jenni. Without their constant support, love and encouragement during my study, this thesis would never have been completed.

Table of Contents

Al	ostract			i
A	cknowl	edgment	s i	v
Ta	ble of (Contents		v
Li	st of Fi	gures	vi	ii
Li	st of Ta	bles		xi
1.	Introd	uction		
	1			
	1.1	Brief Rev	view of The Research And Development of Membrane	
		Separatio	- Dn	1
	1.2	Project B	Background	5
2.	Literat	ture Revi	iew	.6
	2.1	Research	and Development of the Electrofiltration	6
	2.2	The App	lication of Electrofiltration in Dairy Industry13	3
3.	Experi	imental A	Apparatus And Materials	
	ental Apparatus1	8		
		3.1.1	Membrane Module 1	8
		3.1.2	DC Power Supply	0
		3.1.3	Pressure and Flow Measurement 2	1
	3.2	Overview	v of experiment design2	21
		3.2.1	Transmembrane Pressure Control2	2
		3.2.2	Permeate Flux Control2	3
		3.2.3	Cross-flow Velocity Control	3
		3.2.4	Temperature Control	5
		3.2.5	Membrane Voltage And Current Control	5
		3.2.6	Cleaning Procedure	5
	3.3	Calibrati	on to The Readings of Pressure Gauge And Transducers	5
	3.4	Experim	ental Materials)

		3.4.1	Preparation of Calcite Particles	29	
		3.4.2	Alamin	30	
		3.4.3	Physical Properties of the Particles Relevant to Microfiltrtion	30	
4.	Electromicrofiltration: Experimental Results and Discussion				
	33				
	4.1	Water Fl	ux of Membrane	33	
	4.2	Membrai	ne Pore Size	34	
	4.3 Hydrodynamic Properties of The Membrane Module			36	
		4.3.1	Equivalent Diameter of The Module	36	
		4.3.2	Flow Velocity and Pressure	36	
		4.3.3	Momentum Equation of the Boundary Layer	38	
		4.3.4	Critical Length x _c	40	
		4.3.5	Flow Velocity Distribution in The Tube	41	
		4.3.6	Thickness of The Laminar Sub-layer on The Membrane	42	
		4.3.7	The Velocity at The Edge of The Laminar Sub-layer	43	
		4.3.8	The Shear Stress on The Membrane Surface	44	
	4.4	Uncharg	ed Membrane Microfiltration		
		4.4.1	Microfiltration of Alamin and Calcite	44	
		4.4.2	Effect of Cross Flow Velocity	47	
		4.4.3	Effect of pH	51	
	4.5 Charged N		Membrane Microfiltration	52	
		4.5.1	Membrane Polarity And Its Characteristics	53	
		4.5.2	EMF with Negatively Charged Membrane	55	
		4.5.3	EMF with Positively Charged Membrane	60	
	4.6	Constant	Flux And Critical Flux	64	
5.	Effects	s of Elec	tric Field	67	
	5.1 Electrophoretic Migration of Particles			68	
	5.2	Analysis	of Forces Acting on A Particle Depositing		
		on The M	Aembrane	71	
		5.2.1	The Viscous Drag Force F _D	72	

	5.2.2	The E	Electric Field Force F _E	
			74	
	5.2.3	The D	Driving Force F _P Associated with The Transmembrane	:
	Pressure			74
	5.2.4	The R	Rejection Force F_G Associated with The Generation	
		of Ca	athode Gas	
	5.2.5	Summ	nary	77
	5.3 Formation	on of Ga	as Bubbles	77
	5.4 Electrocl	hemical	Corrosion of Stainless Steel	79
	5.4.1	Memb	orane Serving as Electrodes	79
	5.4.2	Auxili	iary Electrolysis Experiments	80
	5	.4.2.1	Experiment 1 — Anode Corrosion	81
	5	.4.2.2	Experiment 2 — Cathode Deposit	82
	5	.4.2.3	Experiment 3 — Corrosion Associated with Tap Wat	er82
	5	.4.2.4	Experiment 4 — Corrosion Rate at Different Chloride	ion
			Concentrations	83
	5.4.3	Consi	deration of The Electrochemical Reactions	83
	5.4.4	Anode	e Corrosion Examined with Microscope	
	5.5 Formatio	on of Ca	thode Deposit: A Dynamic Filtering Layer	
6.	Fouling and Cleaning of the Membranes			
	88			
	6.1 Mechanis	sms of H	Fouling	
	6.2 Cleaning	and Re	store of Membrane Performance	
	6.2.1	Backf	lushing	89
	6.2.2	Acid (Cleaning	90
	6.2.3	Other	cleaning options	91
7.	Conclusions an	nd Rec	ommendations	
8.	References			94

Table of Contents

10.	Nomenclature				
-----	--------------	--	--	--	--

List of Figures

Figure 1-1. Schematic diagram of homogeneous membrane
Figure 1-2. Schematic diagram of asymmetric membrane
Figure 1-3. Schematic diagram of composite
Figure 2-1. Diagram of the electric double layer adjacent to
a negatively charged surface
Figure 2-2. Representation of electrofiltration
Figure 2-3. Schematic diagram of the crossflow electrofiltration
flow circuit9
Figure 2-4. Comparisons of permeate flux decline curves for the
filtration of anatase suspensions with no added field,
a constant field, and a pulsed field10
Figure 2-5. The effect of electric field on the decay of permeate
flux for the filtration of double chain cationic surfactant
from water (J(t))11
Figure 2-6. Flat sheet configuration
Figure 2-7. Tubular configuration 12
Figure 2-8. Calcium and inorganic phosphate equilibrium in milk with
the equilibrium associated with the calcium highlighted
Figure 3-1. Picture of the experimental apparatus 19
Figure 3-2. Schematic diagram of the system arrangement
Figure 3-3. The membrane module 20
Figure 3-4. Cross flow velocity vs transmembrane pressure at different
operating conditions
Figure 3-5. Calibration of the gauge readings in the low pressure range
Figure 3-6. Calibration of the gauge reading in the higher pressure range
Figure 3-7. The gravity deposition of Alamin
Figure 4-1. Water flux of the 5µm membrane
Figure 4-2. Water flux of the 25µm membrane
Figure 4-3. Schematic diagram of the bubble-point method

Figure 4-4. Cross-flow velocity vs pressure drop and Reynolds Number,
permeate valve X_P was closed during the measurement
Figure 4-5. Formation and development of the flow boundary layer 40
Figure 4-6. Velocity profile of inlet section
Figure 4-7. Permeate flux and light absorbance for processing of
newborn calcite with the 5µm membrane45
Figure 4-8. Flux and light absorbance of newborn calcite on 25µm
membrane
Figure 4-9. Permeate flux decline of calcite microfiltration
on 25µm membrane
Figure 4-10. Permeate flux decline of the Alamin microfiltration
on the 5µm membrane47
Figure 4-11. Flux decline at different cross-flow velocities
Figure 4-12. Three operating condition and the fouling mechanisms
Figure 4-13. Flux decline in different pH conditions
Figure 4-14. Dependence of electrode current on voltage applied
when the membrane was negatively charged
Figure 4-15. Dependence of electrode current on the voltage applied
when the membrane was positively charged54
Figure 4-16. Influence of the electric field to the flux decline
Figure 4-17. Segmented application of electric field to the
microfiltration of Alamin
Figure 4-18. Dependence of the flux gain $\Delta \mathbf{J}$ on the cathode current
measured with flowmeter and measuring cylinder respectively57
Figure 4-19. Pulsatile applying of electric field after the permeate
flux stabilized 59
Figure 4-20. Continuous application of electric field at
$1A(52.6A \cdot m^2 \text{ current density}), 10 \sim 7.8V (36 \sim 28 \text{ electric field})$
strength), Alamin content c= 0.7% (w/v), transmembrane pressure
ΔP_{TM} =50kPa, cross flow velocity u=2.28m·s ⁻¹ . membrane
polarity: cathode

Figure 4-21. Continuous application of electric field where membrane
was positively charged and the jacket was filled with
RO water at the beginning
Figure 4-22. Continuous application of electric field where
membrane was positively charged and the jacket
was empty at the beginning61
Figure 4-23. Flux decline on the 25µm membrane with continuous
electric field applying. membrane polarity: cathode, field
strength:158V/cm, current density: $80A/m^2$, $\Delta P_{TM} = 36 \sim 67 kPa$,
calcite content c=0.7%(w/v), u=2.43m/s
Figure 4-24. Comparison of flux decline on the 25µm membrane
in different electric field strength63
Figure 4-25. Moderate increase of transmembrane pressure
to keep a constant flux65
Figure 4-26. Comparison of flux decline of Alamin and calcite particle(I)
on the 5µm membrane66
Figure 4-27. Comparison of flux decline of Alamin and calcite particle(II)
on the 25µm membrane66
Figure 5-1. Small electrode arrangement for examining
electrophoretic movement of particles67
Figure 5-2. Four states of the particle in the membrane unit71
Figure 5-3. The relative velocity of deposited
particle and fluid in the laminar-sub layer72
Figure 5-4. Schematic diagram of the of Alamin particle
distribution after electric field was applied
(examined with microscope, 10x10)78
Figure 5-5. Green color precipitate among Alamin powder(white)
after 24 hour
Figure 5-6. The "frosted" surface of the central bar (used as anode)
Figure 5-7. Corrosion trace on membrane adapter 80
Figure 5-8. Simulative electrolyte experiment, Electrodes gap: 3mm.

Electrode current: 0.08A(equivalent to 80A/m ²)
Figure 5-9. Corrosion of the stainless steel anode after electrolyzing
the Alamin solution for 24 hours. Alamin particle
concentration was 0.7%(w/v). The electrode current
was $0.08A$ (equivalent to $80A/m^2$). Voltage applied
was 10V(equivalent to 36V/cm of electric field strength)
Figure 5-10. Cleaned electrodes. (a)Anode and (b)cathode
Figure 5-11. Cathodic deposit
Figure 5-12. Dependence of corrosion rate on chlorion concentration
(under electric field strength of 33.3V/cm)
Figure 5-13. Circulation of the chloride in different
oxidative state in the recycle filtration system
Figure 5-14. Initial period of anodic corrosion
Figure 5-15. The distribution of Electric field strength on the membrane surface
Figure 6-1. Effectiveness of backflushing on the 25µm membrane
Figure 6-2. Effectiveness of different cleaning methods, single or in combination90
Figure 9-1. Measurement of the specific weight and porosity of Alamin

List of Tables

Table 2-1. Some important membrane separation processes	8
Table 2-2. Various forms of precipitated calcium salts	16
Table 2-3. Composition of whey and whey permeate	16
Table 3-1. Calibration of the readings of pressure gauge and	
transducers in low pressure condition	.26
Table 3-2. Calibration of the readings of \mathbf{P}_{per} and \mathbf{P}_{in} in	
higher pressure condition	27
Table 3-3. Some characteristics of calcite and Alamin particles	31
Table 4-1. Measurement results of the maximum pore size	. 35
Table 5-1. Electrophoretic speed of Alamin particle	. 68
Table 5-2. Gas bubble appearing voltage	. 77