Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE EFFECT OF MUSIC THERAPY ON MOTOR CONTROL OF CEREBRAL PALSIED CHILDREN

A thesis presented in partial fulfilment of the requirements of the degree of Master of Philosophy in Education at Massey University

MORVA CROXSON

ABSTRACT

In this study, the use of music therapy with cerebral palsied children aimed to establish consistent motor control and extend rehearsal of functional motor actions. Music therapy processes explored the effect of auditory rhythm and pentatonic melody on the quantity and regularity of arm-hand motor action of children with cerebral palsy. Eight children, aged five to eleven years, were involved, each child being considered as a single subject case study. The design of the study was an interrupted time series design (ABACA). A constant beat sound stimulus, emitted by a music-based computer, was determined from the personal tempo of each child and formed a beatonly condition in A sections. That beat sound was joined by childactivated pitched sounds in B and C, together with a third compatible music stimulus in section C, which was singing by the therapist. Pitched sounds and singing were restricted to the five notes of a selected pentatonic scale. Each child was asked to 'play with the beat', making arm-hand contact on a specially constructed keyboard. Measurements were recorded instantly by the computer, which registered number of contacts made, average note duration, note changes made, and three measurements relating to regularity of contacts made.

Results showed that all children attended to the music-based task of playing with the beat. Melody plus rhythm stimuli gave more motor contact actions than rhythm stimulus alone, for all children. Measurements of regularity of motor control, (deviation from beat, average tempo and pulse-tempo deviation), were affected in varying ways by melody plus rhythm. Some neuromuscular delay could be inferred, although anticipation of beat sound and muscle action inherent in a rhythm task was present. This suggests that cerebral palsied children respond to a music-based task with extension of effort and some control of muscle tone.

Results from pre and post tests done using selected items from the Bruininks-Oseretsky Test of Motor Proficiency did not give results that could be regarded as significant. A longer experimental period than three weeks is suggested for similar studies. Computer measurement of time-based motor behaviour resulting from music stimuli was objective and accurate. Similar type music therapy studies could find this use of a music-based computer for measurement most useful.

Overall the aim of the study was to look at the effect of music therapy on motor control of cerebral palsied children. Regular rhythm was used to provide structure for the required time-ordered behaviour, and the pace of beat stimulus given was personal to each child. In 'playing with the beat' the child attempted to synchronise arm-hand action with the beat-based signal; this process required cognitive anticipation of a sensorimotor action. The ability to make regular contact was relative to degree of neuromuscular dysfunction, age and maturation and affective interest in the task. The independent variables of music therapy, with rhythm and melody, were employed in a planned, sequential order so that the dependent variable, motor control, could be measured relative to the whole task and to rhythmic and melodic components in the task.

The planned processes of a simple music therapy task, using rhythm and melody stimuli, supported extension of rehearsal of a motor task and improvement of motor control.

ACKNOWLEDGEMENTS

The New Zealand Society for Music Therapy encouraged this research project, to support the recognition and development of music therapy in this country. Elaine Sharman shared music research experience from her period as a McKenzie Research Fellow, and Colleen Pilgrim (then senior research psychologist, Department of Education) advised on an acceptable research model.

Palmerston North Teachers College colleagues have been of great support. Barry Jackson suggested, then devised, a computer-based approach that encompassed both the planned music input and the varied presentation of physical ability from children with cerebral palsy. David Hyde helped technically; David Williams constructed the special keyboard used. Keith Paintin, Colin Gibbs and Guy Broadley shared information, Murray Warn filmed sections of the project, and many other staff members gave valued encouragement. The Research Committee of the College gave \$200 towards material costs and arranged some support towards travel costs.

Faculty members of the Education Department of Massey University have been most helpful. James Chapman, moderator of this thesis, provided interested, firm opinions from a strong interest in special education. This gave an essential objectivity to a topic which needed a disciplined approach and provided an important area of personal development for which I am most grateful. Ross St George, who moderated while James Chapman was in Canada, also extended my experience with a rigorous approach to methodology and assessment.

Test materials were loaned by Eddie Eggers, pychologist with the Education Department's Psychological Services Division; he and other psychologists helped particularly in decisions relating to test procedures. Pre and post test measurements were taken by Lyn Finn, whose experience with special needs children was of great value in this task.

The Principal and staff of Awatapu Special School allowed the pilot session to take place at the school. The eight children who took part in the study attended seven different schools in Palmerston

North, Feilding and Levin. I thank particularly the children, their families, and the principals and staff at the schools for their consistent interest and practical help.

John Anson provided the computer programming skills for the histograms, Grizelda Blazey and Elizabeth Baxter converted the written material into a well-assembled text.

I am grateful for the support given by all these people, and by my family and friends.

TABLE OF CONTENTS

			Page
ABSTRACT	r		ii
ACKNOWLEDGEMENTS			iv
LIST OF TABLES			ix
LIST OF			ix
CHAPTER		INTRODUCTION	1
	1.1 H	HISTORICAL INTRODUCTION	1
	1.2	WHAT IS MUSIC THERAPY?	2
	1.2.1	Definitions and Descriptons	2
	1.2.2	The Nature of Music Therapy Practice	4
	1.3	INFLUENCE OF PSYCHOLOGISTS ON MUSIC IN THERAPY	8
	1.3.1	Writers on Psychology of Music	8
	1.3.2	Relevant Research on Psychology of Music	13
		(a) Extent of research	13
		(b) Related to Piagetian concepts	14
		(c) Acquisition of music concepts related to	
		melody	15
		(d) Music and the brain	15
	1.4	NATURE AND DEVELOPMENT OF MUSIC THERAPY	18
	1.4.1	In America and Britain	18
	1.4.2	Influences in New Zealand	19
	1.5 I	PROCESSES OF MUSIC THERAPY	22
	1.6 N	MUSIC THERAPY LINKS WITH EDUCATION	25
- 4		Relevant Early Developments in Music Education	25
	1.6.2	, , ,	
		Children	26
	1.6.3	Research and Writings of Relevance	26
		(i) Frameworks for research	27
		(ii) Relevant general research	28
		(a) Structure in music therapy	28
		(b) Motor development for special needs	29
		(c) Sensory integration	29
		(d) Music therapy and social learning	30

TABLE OF CONTENTS (continued)

			Page
CHAPTER	2. RE	VIEW OF THE LITERATURE	34
	2.1 C	EREBRAL PALSY	34
	2.1.1	Description of Cerebral Palsy	34
	2.1.2	Definition of Cerebral Palsy	35
	2.1.3	Types of Cerebral Palsy	35
	2.1.4	Causes of Cerebral Palsy	36
	2.1.5	Presentation of Cerebral Palsy	37
	2.1.6	Physical Treatment for Cerebral Palsy -	
		the Bobath Programme	38
	2.1.7	Psychological, Physical and Developmental	
		Research in Cerebral Palsy	39
		(a) Perceptual and visual-motor disorder	39
		(b) Developmental studies	40
		(c) Muscle control processes	40
		(d) Effect of biofeedback	42
	2.2 M	USIC AND CEREBRAL PALSY	43
	2.2.1	Early Papers Relating to Cerebral Palsied	
		Children	
		(a) Responses to music	43
		(b) Music and training	46
		(c) Rhythm patterns	47
	2.2.2	Later Research	47
		(a) Visual motor sequencing and music	47
**		(b) Music as contingent reward and	
		reinforcement	48
		(c) Early developmental experiences in time	
		and sound	49
	2.3 R	КНҮТНМ	50
	2.3.1	The Importance of Rhythm	50
	2.3.2	Definitions of Rhythm in Music	51
	2.3.3	Rhythm and Perception	52
	2.3.4	Rhythm and General Motor Response	55
	2.3.5	Rhythmic Development and Motor Control	56
	2.3.6	Rhythm and Personal Tempo	58

TABLE OF CONTENTS (continued)

			Page
	2.3.7	Synchronisation and Motor Induction	60
	2.3.8	Rhythmic Processing	62
	2.3.9	Muscle Activity and Auditory Rhythm	63
	2.3.10	Rhythm and Affective State	65
	2.4 U	SE OF COMPUTERS IN MUSIC THERAPY	66
CHAPTER	3. RE	SEARCH PROPOSALS	69
	3.1 H	YPOTHESIS	69
	3.2 R	ATIONALE FOR HYPOTHESIS	69
	3.2.1	Cerebral Palsied Children and Motor Control	69
	3.2.2	Age of Children and Relevant Developmental Theory	70
	3.2.3	Music Therapy Support	71
	3.2.4	Time Period of Research	72
	3.2.5	Rhythm Based Measurement and Computer	73
	3.2.6	Research Design	73
	3.3 0	PERATIONAL DEFINITIONS OF VARIABLES	76
	3.3.1	Independent Variables	76
	3.3.2	Dependent Variable	77
	3.3.3	Operational Restatement of the Hypothesis	78
	3.4 S	IGNIFICANCE	78
CHAPTER	4. ME	THOD	79
*	4.1 D	EFINITION OF TERMS RELATIVE TO THIS STUDY	79
	4.2 S	AMPLE OF CHILDREN	80
	4.2.1	Selection and Grouping of Children in Study	80
	4.2.2	Presenting Characteristics of Children in Study	80
	4.3 P	RE AND POST TEST PROCEDURES	83
	4.4 E	STABLISHMENT OF PERSONAL TEMPO FOR EACH CHILD	85
	4.5 E	QUIPMENT USED IN EXPERIMENT	87
	4.5.1	Computer and Keyboard	87
	4.5.2	Level of Sound Used	90
	4.6 P	RACTICAL SETTINGS FOR EXPERIMENT	91
	4.7 N	ATURE OF SOUND USED	91
	4.8 T	HERAPIST BEHAVIOUR IN EXPERIMENT	93

TABLE OF CONTENTS (continued)

	Page
4.9 PILOT SESSION	94
4.10 CONTENT OF EXPERIMENTAL SESSIONS	95
4.11 ANALYSIS OF PROGRAMME	97
4.11.1 Definition of Data Categories	98
4.11.2 Description of Data Categories	98
CHAPTER 5. RESULTS	100
5.1 INTRODUCTION	100
5.2 PRESENTATION OF DATA	101
5.2.1 Contacts.	103
5.2.2 Average Note Duration	108
5.2.3 Note Changes	109
5.2.4 Deviation from Beat	110
5.2.5 Average Tempo	112
5.2.6 Pulse (Tempo Deviation)	114
5.3 PRE AND POST TEST RESULTS	118
CHAPTER 6. DISCUSSION	120
6.1 DESCRIPTIVE DATA	120
6.2 RHYTHM, MEASUREMENT AND SENSORY INTEGRATION	124
6.3 RELATIONSHIPS BETWEEN RESULTS AND CURRENT	
THEORIES AND PRACTICE	129
6.4 FINAL SUMMARY AND IMPLICATIONS	135
APPENDICES:	
APPENDIX A. Supplementary Tables	138
B. Notes on Individual Children	150
C. 1. Pre and Post test information	152
2. Alterations Made to Bruininks-	
Oseretsky Sub-tests	152
D. Histograms of Eight Children in Single	
Case Studies	153

LIST OF TABLES

Table		Page
1	Drum beat measurements to establish personal tempo	86
2	Personal tempo expressed as a ratio	87
3	Sound levels from computer	90
4 -	Frequencies for keyboard notes	93
5	Hand preference	102
6	Total contacts made in 10 lessons	103
7	Comparative differential from 800 contacts	104
8	Contacts made within sections	
	(a) Totals for left hand	106
	(b) Totals for right hand	107
	(c) Totals for preferred hand	107
8	(d) Totals for non-preferred hand	108
9	Average note duration in seconds	109
10	Note changes in 10 lessons	110
11	Deviation from beat	111
12	Average tempo in seconds	112
13	Pulse in seconds	115
14	Results of pre and post tests	119
Appendi	x Table	
A1	Contact rankings	138
A2	Average note duration (Child Six)	141
A3	Deviation from beat - section rankings	142
A4	Average tempo - section rankings	144
A5	Pulse - section rankings	146
A6	Average tempo and pulse - comparison of	
	section rankings	148
	LIST OF DIAGRAMS	
Diagram		
1	Example of music showing beat, metre and pattern	52
2	Design of study	75
3	Time schedule of pre and post test procedures	85
4	Keyboard	89
5	Time base for one lesson	96
6	Detail of histogram for one lesson	97
7	Relationship of contact to nearest beat	111