Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Nanostructure and Physical Properties of Collagen Biomaterials

Katie Sizeland 2015

Nanostructure and Physical Properties of Collagen Biomaterials

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In

Engineering

at Massey University, Manawatu, New Zealand.

Katie Sizeland 2015

Abstract

Collagen is the main structural component of leather, skin, pericardium, and other tissues. All of these biomaterials have a mechanical function and the physical properties are partly a result of the structure of the collagen fibrils. The architecture of the collagen network and how it changes when different chemical and mechanical processes are applied is not fully understood and forms the foundation of this thesis. Synchrotron-based small angle X-ray scattering has been used to quantify aspects of the collagen structure, specifically the orientation index (OI) and D-spacing of the collagen biomaterials investigated. In leather, the nanostructural changes of the collagen network and the strength of the material across a range of different animals, through each stage of the leather-making process, and when model compounds are added or the fat liquor addition is varied has been investigated. Both the D-spacing and fibril orientation were found to change with leather processing. The changes to the thickness of the leather during processing impacts the fibril OI and, once taken into account, the main difference in OI is due to the hydration state of the material with dry materials being less oriented than wet. Model compounds urea, proline, and hydroxyproline were found to increase D-spacing. It was found that as the fat liquor addition is increased, the D-spacing increased. Pure lanolin resulted in a similar increase in Dspacing. The collagen fibril structure and strength of both adult and neonatal pericardium was also investigated. Significant differences were observed with the neonatal tissue having a higher modulus of elasticity and being significantly more aligned than adult pericardium. Neonatal pericardium is advantageously thinner for heart valve applications. This research proves it has the necessary physical properties required. By understanding the hierarchical structure of collagen and its mechanisms for modification when subjected to different chemical and mechanical processes, we gain valuable insight in understanding the performance of leather and skin in biological, medical, and industrial contexts. This will lead to better comprehension of current processes and informs future processing developments.

Acknowledgements

This work has been made possible by a number of people whom I would like to thank.

Thank you to my supervisor and mentor, Professor Richard Haverkamp - without you none of this would have been possible. I greatly appreciate your positive attitude and enthusiastic approach to the projects we have worked on. You inspired me to start my PhD in the first place and you showed me how much fun research can be so thank you.

I would like to thank Mum, Dad, Jacqui, Tom, Nate, and Charlie. Your love and support means the world to me and I couldn't have achieved this without you there every step of the way. Thank you to my friends and everyone who has believed in me and supported me along the way.

I would like to thank the fantastic team on the SAXS/WAXS beamline at the Australian Synchrotron and the ongoing support from Nigel Kirby, Adrian Hawley, and Stephen Mudie. Thanks to you our requests have never been impossible and your knowledge and expertise have been a tremendous help. I am absolutely certain that my PhD and all the research projects I am involved in would not have gone so smoothly without your input. I look forward to continuing to work with you in the future and will continue to try and find any excuse to come back to the synchrotron - it feels like a second home now! Thank you to the New Zealand Synchrotron Group for providing travel funding for the synchrotron trips.

I would like to thank the New Zealand Leather and Shoe Research Association (LASRA) who, supported by the Ministry of Business, Innovation, and Employment on grant number LSRX0801, financially backed this research project. In particular I want to thank Richard Edmonds, Sue Cooper, and Geoff Holmes from LASRA for providing their knowledge and expertise throughout my PhD.

Thank you to Associate Professor Gillian Norris for your input throughout much of this research project.

Table of Contents

Chapter 1:	Introduction	1
1.1 A Pers	pective on the Leather Industry	1
1.2 Aims a	nd Objectives	2
Chapter 2:	Literature Review	5
2.1 Skin		5
2.1.1 Th	e Epidermis	6
2.1.2 Th	e Dermis	9
2.1.3 Ac	cessory Structures of the Skin	12
2.1.4 Fu	nctions of the Skin	
2.2 Collage	n	15
2.2.1 Am	ino Acid Structure of Collagen Type I	
2.2.2 Alp	ha Helix Structure of Collagen Type I	
2.2.3 Tro	opocollagen Structure of Collagen Type I	
2.2.4 Fib	ril Structure of Collagen Type I	20
2.2.5 Ma	cro Organisation of Collagen	24
2.3 Leathe	r	23
2.3.1 Lea	ather Structure	24
2.3.2 Lea	ather Processing	
2.4 Pericar	dium and Heart Valves	
2.4.1 Str	ucture of the Heart	
2.4.2 He	art Valves	
2.5 Small A	angle X-ray Scattering for Nanostructural Measurements	
		iv

2.5.1 Sy	nchrotron Radiation	42
2.5.2 Ge	eneral Theory of SAXS	47
2.5.3 Br	agg's Law	48
2.5.4 SA	XS of Collagen Biomaterials	53
Chapter 3:	Collagen Orientation and Leather Strength	54
3.1 Introd	uction	55
3.2 Experi	imental Procedures	56
3.2.1 Le	ather Processing and Sampling	56
3.2.2 Sn	nall Angle X-ray Scattering	61
3.2.3 Te	ear Strength Testing	67
3.3 Result	S	68
3.4 Discus	sion	71
3.5 Conclu		
5.5 Concie	1510115	/ /
Chapter 4:	Collagen D-spacing and the Effect of Fat Liquor Addition	n 78
Chapter 4: 4.1 Introd	Collagen D-spacing and the Effect of Fat Liquor Addition	
4.1 Introd 4.2 Experi	Collagen D-spacing and the Effect of Fat Liquor Addition uction	
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result	Collagen D-spacing and the Effect of Fat Liquor Addition uction	
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result 4.4 Discus	Collagen D-spacing and the Effect of Fat Liquor Addition uction imental Proceduress. s	
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result 4.4 Discus 4.5 Conclu	Collagen D-spacing and the Effect of Fat Liquor Addition uction imental Procedures s sion	
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result 4.4 Discus 4.5 Conclu Chapter 5:	Collagen D-spacing and the Effect of Fat Liquor Addition uction imental Procedures s s sion usions Changes to Collagen Structure During the Processing of	
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result 4.4 Discus 4.5 Conclu Chapter 5: Leather	Collagen D-spacing and the Effect of Fat Liquor Addition uction imental Procedures s ssion isions Changes to Collagen Structure During the Processing of	
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result 4.4 Discus 4.5 Conclu Chapter 5: Leather 5.1 Introd	Collagen D-spacing and the Effect of Fat Liquor Addition uction imental Procedures ss sion usions Changes to Collagen Structure During the Processing of uction	n
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result 4.4 Discus 4.5 Conclu Chapter 5: Leather 5.1 Introd 5.2 Experi	Collagen D-spacing and the Effect of Fat Liquor Addition uction imental Procedures s sion Changes to Collagen Structure During the Processing of uction imental Procedures	
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result 4.4 Discus 4.5 Conclu Chapter 5: Leather 5.1 Introd 5.2 Experi 5.3 Result	Collagen D-spacing and the Effect of Fat Liquor Addition uction imental Procedures ss ision usions Changes to Collagen Structure During the Processing of uction imental Procedures s	
Chapter 4: 4.1 Introd 4.2 Experi 4.3 Result 4.4 Discus 4.5 Conclu Chapter 5: Leather 5.1 Introd 5.2 Experi 5.3 Result 5.4 Discus	Collagen D-spacing and the Effect of Fat Liquor Addition uction	 77 78 79 79 81 82 84 84 86 5kin to 88 89 91 95 103

Chapter 6: Modification of Collagen D-spacing in Skin by Model		
Compounds	112	
6.1 Introduction	112	
6.2 Experimental Procedures 11		
6.3 Results	117	
6.4 Discussion	120	
6.5 Conclusions	122	
Chapter 7: Fat Liquor Effects on Collagen Fibril Orientation and D-space	ing	
in Leather During Tensile Strain	123	
7.1 Introduction	124	
7.2 Experimental Procedures	126	
7.3 Results	127	
7.4 Discussion	136	
7.5 Conclusions	137	
Chapter 8: Age Dependent Differences in Collagen Alignment of		
Glutaraldehyde Fixed Bovine Pericardium	138	
8.1 Introduction	139	
8.2 Experimental Procedures	142	
8.3 Results	147	
8.4 Discussion	154	
8.5 Conclusions	157	
Chapter 9: Conclusions	159	
Chapter 10: Appendices	162	
10.1 Appendix 1	162	
10.2 Appendix 2	236	
10.3 Appendix 3	301	
Chapter 11: References		
	vi	

List of Figures

Figure 2.1. Epidermal layers
Figure 2.2. Ovine skin anatomy showing the thinner epidermis at the surface and the thicker dermis underneath
Figure 2.3. Cross section of skin showing the main structures in the dermis11
Figure 2.4. Components of the integumentary system
Figure 2.5. Single hair follicle
Figure 2.6. Primary structure of collagen is the sequence of amino acids in the polypeptide
Figure 2.7. Three domains of a peptide showing variation in helical twist
Figure 2.8. The collagen triple helix
Figure 2.9. Hydrogen bonding network showing the regular pattern of direct hydrogen bonds and how water mediated hydrogen bonds are formed20
Figure 2.10. Tropocollagens assemble into collagen fibrils with a 67 nm D-spacing that includes an overlap and a gap region
Figure 2.11. Main structural features of the heart35
Figure 2.12. Layers of the heart wall
Figure 2.13. Interior of the heart
Figure 2.14. Replacement heart valve folded up and inserted via a stent
Figure 2.15. Electromagnetic spectrum with real life objects to illustrate scale lengths

Figure 2.16. Synchrotron radiation emitted from charged particles spiraling in a
magnetic field
Figure 2.17. The Australian Synchrotron
Figure 2.18. Components of a synchrotron: 1) electron gun; 2) linac; 3) booster
ring; 4) storage ring; 5) beamline; 6) end station44
Figure 2.19. A bending magnet changing the path of an electron45
Figure 2.20. (a) a wiggler and (b) an undulator enhancing the intensity of the
synchrotron radiation
Figure 2.21. Basic SAXS experimental configuration
Figure 2.22. Illustration of Bragg's Law48
Figure 2.23. Friedich and Knipping's improved experimental set-up49
Figure 2.24. Zincblende Laue photographs along (a) four-fold and (b) three-fold
axes

Figure 3.4.	An example of the leather samples in plastic and glass vials for
storage and t	cansportation60
Figure 3.5.	SAXS/WAXS beamline at the Australian Synchrotron61
Figure 3.6. directions	Direction of beam on the sample for edge on and flat on sample
Figure 3.7. the beam; (b) and ready to l	(a) edge on samples mounted on the plate ready to be inserted into wet edge on samples sandwiched between kapton tape on the plate be inserted into the beam
Figure 3.8.	(a) SAXS diffraction pattern; (b) plot of intensity versus q64
Figure 3.9. through test	Tear test on a leather sample: (a) at start of test; (b) part way
Figure 3.10. intensity of a	SAXS analysis of leather. a) A raw SAXS pattern; b) integrated whole pattern
Figure 3.11. animals	Collagen d-spacing and tear strength for leather from different
Figure 3.12.	Azimuthal variation in intensity at one value of q (one collagen peak)
Figure 3.13. different anim	Collagen fibril orientation and tear strength for leather from nals: (a) measured flat-on; (b) measured edge-on70
Figure 3.14. cos ² θ cos ² φ	Three dimensional modelled OI' based on normalised integral of
Figure 3.15. strength of s leather that is	The relationship between collagen orientation index (OI) and kin. Edge-on measurements with orientation indices that result in s: a) very weak (vertical fibre defect); b) medium strength (low OI); c)

Figure 4.1. Increase in collagen D-spacing when fat liquor is added78

 Figure 4.2.
 Example of SAXS of leather: (a) raw SAXS pattern; (b) integrated

 intensity profile
 83

Figure 5.1. D-spacing of collagen fibrils and orientation of collagen fibres: (a) dry materials have a smaller D-spacing and a lower OI; (b) wet materials have a larger D-spacing and a higher OI......88 Schematic of custom built stretching apparatus92 Figure 5.2. Leather sample held by the stretching machine and mounted in the Figure 5.3. 93 Figure 5.4. (a) SAXS diffraction pattern; (b) plot of intensity versus q......94 Variation in orientation index for all stages of processing: (\blacktriangle , ---Figure 5.5. Figure 5.6. Figure 5.7. Variation in D-spacing and pH between different stages of processing prior to stretching: $(\Delta, ---)$ corium, (\Box, \dots) grain, $(\bullet, ---)$ pH97 Variation of D-spacing with pH (wet blue and retanned points are Figure 5.8. Figure 5.9. Correlation of OI with pH......98

Figure 5.13. Changes in collagen fibril OI as samples of partially process	ed skin
are stretched: (•, ——) Fresh green, (•,) salted, (\checkmark , ––––) pickled,	, (🔺 , —
$\cdots - \cdots -$) pretanned, (\blacksquare ,) wet blue, (\blacksquare , \cdots) retanned, (\diamondsuit ,) dr	y crust,
(•,) dry crust staked	

Figure 5.17. Variation of thickness corrected OI with pH......109

Figure 7.9. Cross sections of leather under strain. No fat liquor (a,b), 8% fat liquor (c, d). Variation of OI with strain (a,c), variation of d-spacing with strain (b,d) ... 135

 Figure 8.6.
 SAXS spectra of pericardium: a) a poorly oriented tissue; b) a highly

 oriented tissue
 149

Figure 8.8. Plots of the intensity of a selected collagen peak at varying azimuthal angles for bovine pericardium samples. a) a poorly aligned tissue; b) a highly aligned tissue. The central peak at 180° (and other peaks at 0 and 360°) is the variation in intensity of collagen d-spacing whereas the lower peaks at 90° and 270° are due to the scattering from the thickness of the fibrils and fibril bundles

List of Tables

Table 2.1. Leather usage 24
Table 3.1. Leather tear strength compared with orientation index (OI) of collagen
fibrils ^a 71
Table 5.1. D-spacing changes in processing stages of leather with strain
Table 5.2. OI changes in processing stages of leather with strain OI
Table 5.3. Calculated change in orientation index of collagen fibrils for different
thicknesses of material
Table 6.1. Statistics for orientation index (OI) and D-spacing values when
comparing samples with no additives (0%) to samples with added model
compounds. All <i>t</i> -tests were calculated using an alpha of 0.05
Table 7.1. Nominal addition of fat liquor and measured content of fat in leather
samples
Table 8.1. Mechanical properties of adult and neonatal glutaraldehyde fixed
bovine pericardium
Table 8.2. Orientation index (OI) for pericardium samples measured
perpendicular and edge on to the surface for samples cut vertically or horizontally
from the pericardium152

LIST OF PUBLICATIONS

Journal Articles

Sizeland, K. H., Edmonds, R. L., Basil-Jones, M. M., Kirby, N., Hawley A., Mudie S. T., & Haverkamp R. G. (2015). Changes to Collagen Structure during Leather Processing. *Journal of Agricultural and Food Chemistry*, 63(9), 2499-2505.

Wells H. C., **Sizeland K. H.,** Kirby N., Hawley A., Mudie S. T., & Haverkamp R. G. (2015). Collagen Fibril Structure and Strength in Acellular Dermal Matrix Materials of Bovine, Porcine, and Human Origin. *ACS Biomaterials*, 1, 1026-1038.

Sizeland K. H., Holmes. G., Edmonds R. L., Kirby N., Hawley A., Mudie, S., & Haverkamp, R. G. (2015). Fatliquor Effects on Collagen Fibril Orientation and D-spacing During Tensile Strain. *Journal of the American Leather Chemists Association*, 110, 355-362.

Kayed H. R., **Sizeland K. H.**, Kirby N., Hawley A., Mudie S. T., & Haverkamp R. G. (2015). Collagen Cross Linking and Fibril Alignment in Pericardium. *RSC Advances*, 5(5), 3611-8.

Wells H. C., **Sizeland K. H.**, Kayed H. R., Kirby N., Hawley A., Mudie S. T., & Haverkamp R. G. (2015). Poisson's Ratio of Collagen Fibrils Measured by Small Angle X-ray Scattering of Strained Bovine Pericardium. *Journal of Applied Physics*, 117(4).

Sizeland K. H., Wells H. C., Norris G. E., Edmonds R. L., Kirby N., Hawley A., Mudie, S., & Haverkamp, R. G. (2015). Collagen D-spacing and the Effect of Fat Liquor Addition. *Journal of the American Leather Chemists Association*, 110(3), 66-71.

Wells, H. C., **Sizeland, K. H.**, Edmonds, R. L., Aitkenhead, W., Kappen, P., Glover, C., Johannessen, B. & Haverkamp, R. G. (2014). Stabilizing Chromium from Leather

Waste in Biochar. ACS Sustainable Chemistry & Engineering, 2(7), 1864-1870.

Sizeland, K. H., Wells, H. C., Higgins, J., Cunanan, C. M., Kirby, N., Hawley, A., Mudie, S. T., & Haverkamp, R. G. (2014). Age Dependant Differences in Collagen Alignment of Glutaraldehyde Fixed Bovine Pericardium. *BioMed Research International*.

Sizeland, K. H., Wells, H. C., Basil-Jones, M. M., Edmonds, R. L., & Haverkamp, R. G. (2014). Leather Nanostructure and Performance. *International Leather Maker*, 30-34.

Sizeland, K. H., Basil-Jones, M. M., Edmonds, R. L., Cooper, S. M., Kirby, N. (2013) Collagen Orientation and Leather Strength for Selected Mammals. *Journal of Agricultural and Food Chemistry*, 61, 887-892.

Conference Papers

Sizeland, K. H., Edmonds, R. L., Norris, G. E., Kirby, N., Hawley, A., Mudie, S., & Haverkamp, R. G. (2014). "Modification of collagen d-spacing in skin", *Proceedings of the 28th International Federation of the Societies of Cosmetic Chemists Congress,* (pp. 1222-1235), Palais des Congrès, Paris, France, 27th-30th October, 2014.

Sizeland, K. H., Wells, H. C., Norris, G., Edmonds, R. L. & Haverkamp, R. G. "Collagen D-spacing Modification by Fat Liquor Addition". *Proceedings of the 65th Leather and Shoe Research Association Conference,* Wellington, New Zealand, 13th-14th August, 2014.

Wells, H., **Sizeland, K. H.**, Edmonds, R. L., Aitkenhead, W., Kappen, P., Glover, C., Johannessen, B., & Haverkamp, R. G. 2014. "Biochar and Other Solid Waste Minimisation Options". *Proceedings of the 65th Leather and Shoe Research Association Conference*, Wellington, New Zealand, 13th-14th August, 2014.

Sizeland, K. H., Basil-Jones, M. M., Norris, G. E., Edmonds, R. L. Kirby, N., Hawley, A., & Haverkamp, R. G. "Collagen Alignment and Leather Strength", *Proceedings of*

the International Union of Leather Technologists and Chemists Societies XXXII Congress, (Paper 110), Istanbul, Turkey, 29th-31st May, 2013.

Haverkamp, R. G., Basil-Jones, M. M., **Sizeland, K. H.**, & Edmonds, R. L. "Synchrotron Studies of Leather Structure", *Proceedings of the International Union of Leather Technologists and Chemists Societies XXXII Congress,* (Paper 109), Istanbul, Turkey, 29th-31st May, 2013.

Sizeland, K. H., Basil-Jones, M. M., Edmonds, R. L., & Haverkamp, R. G. "Implications of Synchrotron Analysis for Leather Manufacturing", *Proceedings of the 63rd Annual Leather and Shoe Research Association conference,* (pp. 28-37), Wellington, New Zealand, 16th-17th August, 2012.

Conference Presentations and Posters

Haverkamp, R. G., **Sizeland, K. H.**, Wells, H. C., Kayed, H. R. "Strength in Collagen Materials." *Poster presented at the Materials Research Society Spring Meeting*, San Francisco, USA, 2015.

Haverkamp, R. G., **Sizeland, K. H.**, Wells, H. C., Kayed, H. R., Edmonds, R. L., Kirby, N., Hawley, A., & Mudie, S. "Orientation of Collagen Fibrils in Tissue." *Symposium presented at the 1st Matrix Biology Europe Conference*, Rotterdam, Netherlands, 2015.

Wells, H. C., **Sizeland, K. H.**, Edmonds, R. L., Kirby, N., Hawley, A., Mudie, S., & Haverkamp, R. G. "Poisson Ratio of Collagen Fibrils." *Poster presented at the* 1st *Matrix Biology Europe Conference, Rotterdam, Netherlands*, 2015.

Sizeland, K. H., Edmonds, R. L., Kirby, N., Hawley, A., Mudie, S., & Haverkamp, R. G. "Chemical Processing and Leather Strength", *Poster presented at the Fourth International Conference on Multifunctional, Hybrid, and Nanomaterials*, Barcelona, Spain, 9th-13th March, 2015. **Sizeland, K. H.**, Haverkamp, R. G., Wells, H. C., Kayed, H. R., Edmonds, R. L., Kirby, N., Hawley, A., & Mudie, S. "Strength in Collagen Biomaterials", *Poster presented at the Fourth International Conference on Multifunctional, Hybrid, and Nanomaterials*, Barcelona, Spain, 9th-13th March, 2015.

Wells, H. C., **Sizeland, K. H.**, Kayed, H. R., Kirby, N., Mudie, S., & Haverkamp, R. G. "Poisson Ratio of Collagen Fibrils Measured by SAXS", *Poster presented at the Fourth International Conference on Multifunctional, Hybrid, and Nanomaterials,* Barcelona, Spain, 9th-13th March, 2015.

Sizeland, K. H., Basil-Jones, M. M., Edmonds, R. L., Kirby, N., Hawley, A., Mudie, S., & Haverkamp, R. G. "Changes to the Nanostructure of Collagen in Skin During Leather Processing", *Poster presented at the Australian Synchrotron Users Meeting*, Melbourne, Australia, 20th-21st November, 2014.

Sizeland, K. H., Edmonds, R. L., Norris, G. E., Kirby, N., Hawley, A., Mudie, S., & Haverkamp, R. G. "Modification of Collagen Structure in Skin", *Poster presented at the 28th International Federation of Societies of Cosmetic Chemists*, Palais des Congrès, Paris, France, 27th-30th October, 2014.

Sizeland, K. H., Wells, H., Norris, G. E., Edmonds, R. L., & Haverkamp, R. G. "Collagen D-spacing Modification by Fat Liquor Addition", *Symposium presented at the 65th Annual Leather and Shoe Research Association Conference*, Wellington, New Zealand, 13th-14th August, 2014.

Wells, H., **Sizeland, K. H.**, Edmonds, R. L., Aitkenhead, W., Kappen, P., Glover, C., Johannessen, B., & Haverkamp, R. G. "Biochar and Other Solid Waste Minimisation Options", *Symposium presented at the 65th Annual Leather and Shoe Research Association Conference*, Wellington, New Zealand, 13th-14th August, 2014.

Sizeland, K. H., Edmonds, R. L., Norris, G. E., Kirby, N., Hawley, A., Mudie, S. & Haverkamp, R. G. "Effects of Model Compounds on the Nanostructure of Skin", *Poster presented at the 65th Annual Leather and Shoe Research Association Conference*, Wellington, New Zealand, 13th-14th August, 2014.

Wells, H. C., **Sizeland, K. H.**, Edmonds, R. L., Kirby, N., Hawley, A., Mudie, S., & Haverkamp, R. G. "Poisson Ratio of Collagen Fibrils", *Poster presented at the 1st*

Matrix Biology Europe conference (XXIVth FECTS meeting), Rotterdam, Netherlands, 21st-24th June, 2014.

Haverkamp, R. G., Wells, H. C., **Sizeland, K. H.**, Edmonds, R. L., Aitkenhead, W., Kappen, P., Glover, C., & Johannessen, B. "Biochar from Leather - the Fate of Chromium", *Symposium conducted at the 117th Society of Leather Technologists and Chemists Annual Conference*, Northampton, United Kingdom, 26th April, 2014.

Sizeland, K. H., Norris, G. E., Edmonds, R. L., Kirby, N., Hawley, A., & Haverkamp, R. G. "Collagen Fibril Axial Periodicity and the Effects of Polyol Addition", *Poster presented at the 12th International Conference on Frontiers of Polymers and Advanced Materials*, Auckland, New Zealand, 8th-13th December, 2013.

Sizeland, K. H., Norris, G. E., Edmonds, R. L. Kirby, N., Hawley, A., & Haverkamp, R. G. "Polyol Modification of Collagen Fibril Axial Periodicity", *Poster presented at the Australian Synchrotron Users Meeting,* Melbourne, Australia, 21st-22nd November, 2013.

Kayed, H. R., **Sizeland, K. H.**, Kirby, N., Hawley, A., Mudie, S., & Haverkamp, R. G. "Cross Linking Collagen Affects Fibril Orientation", *Poster presented at the Australian Synchrotron Users Meeting*, Melbourne, Australia, 21st-22nd November, 2013.

Sizeland, K. H., Basil-Jones, M. M., Norris, G. E., Edmonds, R. L., Kirby, N., Hawley, A., & Haverkamp, R. G. "Collagen Alignment and Leather Strength", *Poster presented at the 64th Annual Leather and Shoe Research Association Conference,* Wellington, New Zealand, 15th-16th August, 2013.

Sizeland, K. H., Basil-Jones, M. M., Norris, G. E., Edmonds, R. L., Kirby, N., Hawley, A., & Haverkamp, R. G. "Collagen Alignment and Leather Strength", *Poster presented at the International Union of Leather Technologists and Chemists Societies XXXII Congress*, Istanbul, Turkey, 28th-31st June, 2013.

Haverkamp, R. G., Basil-Jones, M. M., **Sizeland, K. H.**, & Edmonds, R. L. "Synchrotron Studies of Leather Structure", *Symposium conducted at the International Union of Leather Technologists and Chemists Societies XXXII Congress*, Istanbul, Turkey, 28th-31st June, 2013.

Sizeland, K. H., Basil-Jones, M. M., Edmonds, R. L. & Haverkamp, R. G. "SAXS of Leather Reveals a Structural Basis for Strength", *Poster presented at the Australian Synchrotron Users Meeting*, Melbourne, Australia. 28th-29th November 2012.

Haverkamp, R. G., Basil-Jones, M. M., **Sizeland, K. H.**, & Edmonds, R. L. "SAXS Structural Studies of Collagen Materials", *Symposium conducted at the Australian Synchrotron Users Meeting*, Melbourne, Australia, 28th-29th November, 2012.

Poddar, D., Ainscough, E. W., Freeman, G. H., Ellis, A., Glover, C. J., Johannessen, B., **Sizeland, K. H.**, Singh, H., Haverkamp, R. G., & Jameson, G. "Preliminary characterization by XAS of Mn hyperaccumulated by probiotic Lactobacillus sp.", *Poster presented at the Australian Synchrotron Users Meeting,* Melbourne, Australia. 28th-29th November, 2012.

Haverkamp, R. G., Basil-Jones, M. M., **Sizeland, K. H.**, & Edmonds, R. L. "Implications of Synchrotron Analysis for Leather Manufacturing", *Symposium conducted at 63rd Annual Leather and Shoe Research Association Conference*, Wellington, New Zealand. 16th-17th August, 2012.

Papers I am Acknowledged in

Beattie, I. R., & Haverkamp, R. G. (2011). Silver and gold nanoparticles in plants: sites for the reduction to metal. *Metallomics*, *3*(6), 628-632.

Luangpipat, T., Beattie, I. R., Chisti, Y., & Haverkamp, R. G. (2011). Gold nanoparticles produced in a microalga. *Journal of Nanoparticle Research*, *13*(12), 6439-6445.

Basil-Jones, M. M., Edmonds, R. L., Cooper, S. M., & Haverkamp, R. G. (2011). Collagen fibril orientation in ovine and bovine leather affects strength: A small angle X-ray scattering (SAXS) study. *Journal of agricultural and food chemistry*, 59(18), 9972-9979. Basil-Jones, M. M., Edmonds, R. L., Norris, G. E., & Haverkamp, R. G. (2012). Collagen Fibril Alignment and Deformation during Tensile Strain of Leather: A Small-Angle X-ray Scattering Study. *Journal of agricultural and food chemistry*, *60*(5), 1201-1208.

Owe, L. E., Tsypkin, M., Wallwork, K. S., Haverkamp, R. G., & Sunde, S. (2012). Iridium–ruthenium single phase mixed oxides for oxygen evolution: Composition dependence of electrocatalytic activity. *Electrochimica Acta*, *70*, 158-164.

Haverkamp, R. G. (2013). The Australian Synchrotron - A Powerful Tool for Chemical Research Available to New Zealand Scientists. *Chemistry in New Zealand*, **76**(1).