
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

On Fast and Space-Efficient Database Normalization

A dissertation presented in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy
in

Information Systems

at Massey University, Palmerston North, New Zealand

Henning Koehler

2007

Abstract

A common approach in designing relational databases is to start with a relation
schema, which is then decomposed into multiple subschemas. A good choice of sub-
schemas can often be determined using integrity constraints defined on the schema.

Two central questions arise in this context. The first issue is what decompositions
should be called “good”, i.e., what normal form should be used. The second issue is how
to find a decomposition into the desired form.

These question have been the subject of intensive research since relational databases
came to life. A large number of normal forms have been proposed, and methods for their
computation given. However, some of the most popular proposals still have problems:

• algorithms for finding decompositions are inefficient

• dependency preserving decompositions do not always exist

• decompositions need not be optimal w.r.t. redundancy/space/update anomalies

We will address these issues in this work by

• designing efficient algorithms for finding dependency preserving decompositions

• proposing a new normal form which minimizes overall storage space

This new normal form is then characterized syntactically, and shown to extend existing
normal forms.

iii

Acknowledgement

I would like to thank my supervisor Sven Hartmann for his constant support, ranging
from fruitful discussions and extensive proofreading to help with administrative hurdles
and moral support.

Furthermore, my thanks go to my co-supervisor Klaus-Dieter Schewe, and to my
colleagues Sebastian Link and Markus Kirchberg, who helped and supported me in various
forms.

I dedicate this thesis to my parents, Klaus and Waltraud Koehler, and to my partner
Jane Zhao.

v

Contents

1 Introduction 3
1.1 Relational Databases and Dependencies . 3
1.2 Normal Forms . 5
1.3 Contributions and Outline . 7

2 Linear Resolution and Faithful BCNF Decomposition 10
2.1 Linear Resolution . 11

2.1.1 The Basic Algorithm . 13
2.1.2 Improvements and Complexity Analysis 17
2.1.3 Polynomial Cases . 20
2.1.4 Updating the Atomic Closure . 22
2.1.5 Other Applications . 24
2.1.6 Related work . 25

2.2 Faithful BCNF Decomposition . 26
2.2.1 The Basic Algorithm . 26
2.2.2 Improvements and Complexity Analysis 29
2.2.3 Partial Determination Cycles . 31
2.2.4 Related Work . 36

2.3 Complex-Valued Databases . 36
2.3.1 Introduction . 36
2.3.2 Representation Basis . 40
2.3.3 Linear Resolution . 42
2.3.4 Faithful BCNF-Decomposition . 46
2.3.5 Lossless Decomposition . 48
2.3.6 Testing for BCNF . 54

3 Canonical Covers 55
3.1 Hypergraph Decomposition . 57

3.1.1 Autonomous Sets . 57
3.1.2 Superedges and Partial Superedges 62
3.1.3 Computing Autonomous Sets . 63

3.2 Computing all Canonical Covers . 65
3.2.1 Partial Covers . 65
3.2.2 Relative Covers . 67
3.2.3 Implication Dependencies . 69
3.2.4 The Algorithm . 72
3.2.5 Improvements and Complexity Analysis 74

1

3.2.6 LR-reduced Covers . 75
3.2.7 Related Work . 75

3.3 Size and Number of Non-redundant Covers 76
3.4 Partial Implication Cycles . 78
3.5 Essential FDs . 82

3.5.1 Deriving essential FDs . 83
3.5.2 Testing essentiality . 86

4 Domination Normal Form 91
4.1 Minimization as Normal Form . 92

4.1.1 Ordering by Size of Instances . 92
4.1.2 Ordering by Attribute Count of Instances 95
4.1.3 Ordering by Containing Schema Closures 96

4.2 Equivalence of Orderings . 97
4.2.1 Size vs. Attribute Count . 98
4.2.2 Attribute Count vs. Containing Schema Closures - Part I 99
4.2.3 Subset Construction . 99
4.2.4 Attribute Count vs. Containing Schema Closures - Part II 107

4.3 Relationship to other Normal Forms . 110
4.3.1 A Detailed Example . 111

4.4 Computing Domination Normal Form . 114
4.4.1 Dependency Preserving DNF . 116

4.5 Combining Normal Forms . 119
4.5.1 DNF and BCNF . 119
4.5.2 DNF and EKNF . 127

5 Summary 129
5.1 Main Results . 129
5.2 Open Problems . 130

2

Chapter 1

Introduction

In this chapter we will give a brief introduction to relational database theory, outlining
challenges and how we will deal with them in this work.

1.1 Relational Databases and Dependencies

A number of different database models have been suggested, such as relational, complex-
valued or object-oriented databases. In particular, XML-Databases (which are a certain
type of complex-valued databases) have received much attention in recent years. While
the relational model is one of the oldest, relational databases are still the most common
ones.

The main advantage of the relational model over more powerful models is its sim-
plicity. By approaching a problem, which is relevant in different data models, in the
relational model first, we can concentrate on the core of the problem. Once solved for the
relational case, the results can often be extended to more complex database models, with
the relational model serving as common denominator. This approach seems more suitable
than tackling issues in a complex model directly. We therefore will mainly focus on the
relational model in this work.

We begin by introducing some basic terms. A relational database schema consists
of a set of relation schemas. A relation schema R = {A1, A2, . . . , An} is a finite set of
attributes . Each attribute Ai has a domain dom(Ai) associated with it. Domains are
arbitrary sets, but unless explicitly stated otherwise, we will assume that domains are
countably infinite.

A relation r over a relation schema R is a finite or infinite set of tuples, and each
element ei ∈ dom(Ai) of the tuple corresponds to one attribute Ai ∈ R. Relations over
a schema are also commonly referred to as schema instances or tables. Sets of schema
instances, one for each relation schema in a database schema, are called database instances.

A vital tool for managing data are integrity constraints . They describe, usually in a
syntactic manner, what instances of a database schema are acceptable or valid. Formally,
an integrity constraint on R is a function mapping relations r on R to {True, False}. We
say that a constraint holds on r if it maps r to True.

Constraints are usually used to avoid storing instances with inconsistent data. By
only accepting updates which lead to valid instances, inconsistencies can be detected
immediately. Many different types of integrity constraints have been suggested in the

3

literature. In this work we will focus on the most common type, that is on functional
dependencies, and in some occasions also consider multivalued and join dependencies.

With each relation schema we associate a set Σ of integrity constraints, in particular
functional dependencies (FD), multivalued dependencies (MVD) and join dependencies
(JD). These restrict which relations over R we may store. We say that a set Σ of con-
straints over R implies a constraint (or set of constraints) c, written Σ ² c, if c holds on
every relation r over R for which all constraints in Σ hold. If two sets of constraints Σ
and Σ′ imply each other, we call Σ a cover of Σ′ (and vice versa). We say that a FD
X → Y ∈ Σ is redundant in Σ, if Σ \ {X → Y } implies X → Y (and thus is still a cover
of Σ).

At this point we need to consider two options: If we allow relations to be infinite, we
get a different notion of implication than we get when considering only finite relations. In
the latter case, implication is commonly referred to as finite implication, and these notions
of implications can be different [11]. In this work we shall consider only finite relations.
However, as implication and finite implication are actually the same for functional and
join dependencies [33], all our results from chapters 2 and 3 will hold for infinite relations
as well. In chapter 4 we will compare relations w.r.t. their size, which is best done for
finite relations only. Alternatively, we could allow infinite relations in principal, but only
consider finite ones in our comparison, which would again lead to the same results.

A functional dependency on R is an expression of the form X → Y (read “X deter-
mines Y ”) where X and Y are subsets of R. For attribute sets X,Y and attribute A we
will write XY short for X ∪ Y and A short for {A}. We say that a FD X → Y holds on
a relation r over R if every pair of tuples in r that coincides on all attributes in X also
coincides on all attributes in Y . We call a FD X → Y trivial if Y ⊆ X. Trivial FDs are
the only FDs which hold on every relation. A set X ⊆ R is a key of R w.r.t. a set Σ
of integrity constraints on R, if Σ implies X → R. Note that some authors use the term
’key’ only for minimal keys, and call keys which may not be minimal ’superkeys’.

Implication of FDs can be characterized syntactically by the following derivation rules,
known as the Armstrong Axioms:

X → Y
Y ⊆ X,

X → Y

XW → Y W
,

X → Y Y → Z

X → Z
(1.1)

Here the FDs on the top imply the FD at the bottom, and Y ⊆ X is a side condition
which needs to hold for the first rule to be applicable. The Armstrong Axioms are known
to be sound , meaning that only implied FDs can be derived (which is easy to see), and
also complete, i.e., every implied FD can be derived [2]. We write Σ∗ for the set of all
FDs on R implied by Σ.

Note that it is often necessary to apply these derivation rules multiple times, as implied
FDs usually cannot be derived in one step. This leads to a sequence of derivation steps,
which can be written as derivation trees .

Example 1.1. Consider the set of FDs

Σ = {A → B,AB → C, BC → D}
The FD A → D is implied by Σ, and can be derived using the Armstrong Axioms as
follows:

A → B

A → AB

AB → C

AB → ABC

ABC → BC BC → D

ABC → D
AB → D

A → D

4

While such derivation trees could in principal be used to show that a FD X → Y is
implied by a set Σ of other FDs, this is not very efficient. Instead we compute the closure
X∗ of the left hand side X, which is the set of all attributes determined by X:

X∗ := {A ∈ R | X → A ∈ Σ∗}

In the rare case where the set Σ is not clear from the context, we write X∗Σ.
Once computed, we only need to check whether the right hand side Y is a subset of

X∗. Computing X∗ can be done quickly using the well-known closure algorithm, which
can be implemented to run in linear time, as shown by Beeri and Bernstein in [5].

Algorithm “closure”

INPUT: set of FDs Σ, attribute set X
OUTPUT: X∗, the closure of X w.r.t. Σ

X∗ := X
while ∃X ′ → Y ∈ Σ with X ′ ⊆ X∗, Y * X∗ do

X∗ := X∗Y
end

For a set X ⊆ R we denote the projection of r onto the attributes in X by r[X]. The
join of two relations r[X] and r[Y] is a relation on X ∪ Y :

r[X] ./ r[Y] :=

{
t

∣∣∣∣
∃t1 ∈ r[X], t2 ∈ r[Y].
t[X] = t1 ∧ t[Y] = t2

}

A join dependency on R is an expression of the form ./ [R1, . . . , Rn] where the Ri

are subsets of R with
⋃

Ri = R. We say that the JD ./ [R1, . . . , Rn] holds on r if the
decomposition {R1, . . . , Rn} is lossless for r, i.e., if

r[R1] .// r[Rn] = r

A multivalued dependency on R is a join dependency ./ [R1, R2] with only two sub-
schemas. It is usually written as X ³ Y where X = R1 ∩ R2 and Y = R1 \ R2 or
Y = R2 \ R1. Note that while these two forms of writing are technically equivalent for
a fixed relation R, their “natural interpretations” (i.e., how a designer would understand
them) can be quite different. This has lead researchers to consider different notions of
implication for MVDs in undetermined universes [8, 30]. These will not be relevant for
our work though, and we stick with the standard notion of implication.

For a more thorough introduction to relational database theory see e.g. [27, 33, 36].

1.2 Normal Forms

A common approach in designing relational databases is to start with a universal relation
schema, which is then decomposed into multiple subschemas. A good choice of subschemas
can often be determined using integrity constraints defined on the original schema.

5

To ensure that the schemas of a decomposition D = {R1, . . . , Rn} with Ri ⊆ R can
hold the same data as the original schema R, we must ask for a decomposition that has
the lossless join property, i.e., the join dependency ./ [R1, . . . , Rn] must be implied by Σ.

Furthermore, the decomposition should be dependency preserving or faithful , i.e. the
dependencies on the schemas Ri which are implied by Σ should form a cover of Σ. This
allows a database management system to check constraints for individual relations only,
without having to compute their join. The projection of a set Σ of FDs onto a subschema
Ri ⊆ R is

Σ[Ri] := {X → Y ∈ Σ | XY ⊆ Ri}
Thus a decomposition D = {R1, . . . , Rn} is dependency preserving if

(⋃
Σ∗[Ri]

)∗
=

(⋃
Σi

)∗
= Σ∗

where Σi is a cover for Σ∗[Ri] (when describing the decomposition, we usually want to
represent Σ∗[Ri] by a smaller cover for it). Note that it is not sufficient to only project Σ
onto the Ri, rather than Σ∗.

Example 1.2. Let R = ABC with constraints Σ = {A → B,B → C}. Then Σ[AC] = ∅,
although A → C is a FD on AC which is implied by Σ.

Normal forms are syntactic descriptions of “good” relation or database schemas. A
number of normal forms have been proposed, depending on the types of integrity con-
straints used. For functional dependencies, the two most important normal forms are
Third Normal Form (3NF) and Boyce-Codd Normal Form (BCNF).

A relation schema R is in Boyce-Codd Normal Form w.r.t. a set Σ of FDs on R if and
only if for every non-trivial FD X → Y ∈ Σ the left hand side (LHS) X is a key for R,
i.e., X → R ∈ Σ∗, where

Σ∗ := {X → Y | X, Y ⊆ R, Σ ² X → Y }

This normal form is desirable as it prevents redundancy and update anomalies caused by
such redundancy [36].

Third Normal Form is weaker than BCNF, i.e., a relation schema in BCNF is also in
3NF. A relation schema R is in Third Normal Form if and only if for every non-trivial
FD X → A ∈ Σ∗ we have that

• the left hand side (LHS) X is a key for R, or

• attribute A lies in a minimal key of R

Attributes which lie in some minimal key are called prime attributes.
While 3NF does not prevent redundancy, it does prevent certain types of update

anomalies [36]. The advantage of 3NF over the more powerful BCNF is that a schema
can always be decomposed into 3NF while preserving dependencies [10]. This is not the
case for BCNF [5].

When decomposing a schema into BCNF (or at least 3NF), we are looking for a
decomposition D = {R1, . . . , Rn} such that each Ri is in BCNF (3NF) w.r.t. to the
projected constraints Σ∗[Ri]. The following decomposition algorithm, originally suggested
by Codd in [12] finds a lossless BCNF decomposition:

6

Algorithm “BCNF Decomposition”

INPUT: schema R with FDs Σ
OUTPUT: lossless BCNF decomposition D

D := {R}
while D contains schema Ri not in BCNF do

pick non-trivial X → A on Ri with Σ ² X → A and Σ 2 X → Ri

D := D \ {Ri} ∪ {Ri \ A,XA}
end

We call Σ LHS-minimal or LHS-reduced if the left hand sides (LHSs) of FDs X →
Y ∈ Σ cannot be reduced further, i.e., for every X ′ (X we have Σ 2 X ′ → Y . It was
shown by Biskup, Dayal and Bernstein in [10] that the following algorithm produces a
lossless 3NF decomposition.

Algorithm “3NF Synthesis”

INPUT: schema R with LHS-minimal FDs Σ
OUTPUT: dependency preserving 3NF decomposition D

D := ∅
for all X → Y ∈ Σ do

D := D ∪ {XY }
end
if D contains no key of R then

add a minimal key of R to D

A large number of other normal forms have been proposed, mostly for different classes
of dependencies, e.g. 4NF for FDs and MVDs, and 5NF, PJ/NF, KCNF for FDs and
JDs [33, 44]. However, most of them are not directly relevant to the work presented here.
Those that are will be introduced where we need them.

1.3 Contributions and Outline

In this work, we will address the problem of finding a “good” database schema through
decomposition. Here we face two different issues. The first issue is what decompositions
should be called ”good”, i.e., what normal form should be used. The second issue is how
to find a decomposition into the desired form.

We will first tackle the problem of how to find decompositions into the existing nor-
mal form BCNF. For 3NF this has already been solved in a satisfactory manner, as a
dependency preserving 3NF decomposition can be found in polynomial time [10]. Find-
ing dependency preserving BCNF decompositions, however, is a more challenging issue.
The problem of deciding whether a dependency preserving BCNF decomposition exist is
known to be co-NP-hard [5, 42]. The algorithm proposed in [5] for finding BCNF de-
compositions requires exponential time, but still does not always guarantee preservation
of dependencies whenever possible. The approach described in [42] improves on that by
finding a BCNF decomposition in polynomial time, but it does not generate dependency

7

preserving decompositions either. Only the algorithm suggested in [38] always finds a de-
pendency preserving BCNF decomposition if one exists, but uses a brute force approach
which always requires exponential time.

We will address this problem in chapter 2 by developing an efficient algorithm called
linear resolution for computing the atomic closure, which consists of all functional de-
pendencies implied by a given set Σ of functional dependencies, which are minimal in
some sense. While the size of the atomic closure can be exponential in the size of Σ, it
often turns out to be rather small, and our linear resolution algorithm computes it in
output-linear time. Furthermore, we identify polynomial subclasses based on the form
of Σ, and describe an efficient method for updating the atomic closure when functional
dependencies get added to Σ. Other applications for linear resolution, such as computing
all minimal keys or computing covers on subschemas, are considered as well.

In section 2.2 the atomic closure is then used to find a suitable cover to be used
with the synthesis algorithm, resulting in a BCNF decomposition if one exists. For this
we improve the algorithm by Osborn [38]. In addition, we show that for finding faithful
BCNF decompositions we only require a subset of the atomic closure. This subset consists
of all functional dependencies which participate in cycles (e.g. A → B, B → A), and we
show that our linear resolution approach can easily be adapted to compute only this
subset.

In section 2.3 we then extend the core of our work from sections 2.1 and 2.2 to a
complex-valued data model described in [29], which is based on record, list, set and
multiset constructor. It turns out that our approach works in this complex-valued model
as well, but special care has to be taken to combat an explosion in complexity, which arises
due to an exponential number of subattributes. Another complication arises from the fact
that a vital theorem for characterizing lossless and dependency-preserving decompositions
in the relational model does not extend to the complex-valued model directly. We solve
this by placing some suitable restrictions on the set Σ, and show that the theorem holds
under these restrictions.

For the work of chapter 2, the choice which set Σ of functional dependencies to preserve
is central. Instead of Σ we could use a cover Σ′ of functional dependencies equivalent to
Σ instead, and the choice of the cover determines the decomposition. This reduces the
problem of finding the “right” decomposition to finding the “right” cover. As a result of
working with covers instead of decompositions directly, we can ensure the preservation of
dependencies more easily. It turns out that for many problems, including that of finding
faithful BCNF decompositions, the “right” cover is in canonical form. Roughly speaking,
canonical covers are minimal sets of minimal FDs - a precise definition is given in section
2.1.

In chapter 3 we approach the problem of finding the “right” cover (be it for BCNF
decomposition or other purposes) by developing an algorithm for computing the set of
all canonical covers. However, the number of canonical covers can be huge, so computing
or representing them directly becomes quickly infeasible. To counter this, we partition
canonical covers into partial canonical covers, which can reduce their number dramatically,
and at the same time makes them easier to compute as well. Since the set of all canonical
covers forms a hypergraph, with functional dependencies as vertices and covers as edges,
we develop a general approach for hypergraph decomposition in section 3.1, based on the
notion of autonomous set.

This is then used in section 3.2, where we characterize some (non-minimal) autonomous

8

sets for the hypergraph of all canonical covers. Furthermore, we make implications be-
tween functional dependencies explicit in the form of implication dependencies, which are
functional dependencies over other functional dependencies. This allows us to compute
(partial) canonical covers as minimal keys w.r.t. a set of implication dependencies.

We derive some simple bounds on the size and number of non-redundant covers (which
includes canonical covers) in section 3.3, and develop a polynomial-time method for finding
finer (but still non-minimal) autonomous sets in section 3.4. As we only require so-called
essential functional dependencies which actually appear in some canonical cover, we wish
to avoid inessential ones when computing the atomic closure. In section 3.5 we reduce
this to the problem of identifying essential functional dependencies. It turns out that
this problem, as well as the problem of identifying autonomous sets are NP-complete and
co-NP-hard, respectively. Consequently we provide some necessary, but not sufficient,
criteria for testing essentiality, which can be checked in polynomial time.

Finally, we address the question of what we should call a “good” decomposition in
chapter 4. We propose a new normal form (more precisely, a number of similar normal
forms) called Domination Normal Form in section 4.1, motivated by semantic properties.
Roughly speaking, we say that a decomposition is in Domination Normal Form if it
is “minimal” among a set of “suitable” decompositions. The main advantages of this
approach, compared to existing normal forms, are the following:

• Domination Normal Form has a clear semantic motivation, optimizing the whole
decomposition rather than only considering individual schemas.

• Requirements for decompositions, such as preservation of dependencies, can easily
be integrated into Domination Normal Form by restricting the set of “suitable”
decompositions to those which meet the requirements.

• A decomposition into Domination Normal Form always exists, provided the set of
all “suitable” decompositions is not empty.

For this we introduce two semantic notions of minimality orders, based on the size
(storage space) and attribute count (how often attribute values appear) of instances. We
also present a syntactical characterization in the form of a third ordering, and prove
that all three orderings are equivalent in section 4.2. These new normal forms are then
compared to other normal forms in section 4.3, and it turns out that they are identical to
BCNF and other existing normal forms for a single relation schema, but extend them to
multiple schemas in a different, and perhaps (as we will argue) more suitable way. Using
the results from chapters 2 and 3, we describe algorithms for computing decompositions
into Domination Normal Form efficiently in sections 4.4 and 4.5.

We conclude in chapter 5 where we summarize our results briefly and discuss some
problems which remain open. Experimental results where we implemented some of our
algorithms are presented in an appendix.

Some parts of this thesis have already been published. Results from sections 2.1 and
2.2 were presented in [24], while parts of chapter 4 are described in [25].

9

Chapter 2

Linear Resolution and Faithful
BCNF Decomposition

It is well known that lossless and faithful (i.e., dependency preserving) decompositions
of relational database schemas into Boyce-Codd Normal Form (BCNF) do not always
exist, depending on the set of functional dependencies given, and that the corresponding
decision problem is NP-hard [5, 42].

As the next lemma shows, finding a lossless and faithful BCNF decomposition is easy
once we have found a faithful BCNF decomposition. This allows us to concentrate on the
latter problem.

Lemma 2.1. [10] A faithful decomposition of R is lossless iff it contains a subschema
which forms a key of R.

Every minimal key is in BCNF, as the projection of Σ∗ onto it contains only trivial
FDs. Thus we can easily make a faithful BCNF decomposition D lossless by adding a
minimal key as additional subschema if D does not contain a key of R, such that the new
decomposition is still in BCNF (and obviously faithful).

To see that there does not always exist a faithful BCNF decomposition consider e.g.
the schema R = ABC with FDs

Σ = {AB → C, C → B}.
The well-known decomposition algorithm “BCNF Decomposition” from section 1.2 pro-
duces a lossless BCNF decomposition, which however need not be faithful, even if a faithful
decomposition exists (example 2.1).

Example 2.1. Consider the schema CLRT containing the attributes

C = Course, L = Lecturer, R = Room, T = Time

with the functional dependencies

Σ = {C → L, CT → R, LT → C, RT → C}
The only FD in Σ for which the left hand side is not a key is C → L, so algorithm “BCNF
Decomposition” produces the decomposition

{
(CL, {C → L}),
(CRT, {CT → R, RT → C})

}

10

The missing FD LT → C is not implied by

{C → L} ∪ {CT → R, RT → C}

thus the decomposition is not faithful.

On the other hand, the popular synthesis algorithm “3NF-Synthesis” produces a faith-
ful decomposition, but the resulting relations Ri need not be in BCNF. And again, there
are cases where a faithful BCNF decomposition exists, but the synthesis algorithm does
not find one:

Example 2.2. Consider again the schema CLRT with the FDs

Σ = {C → L, CT → R, LT → C, RT → C}

If we synthesize a decomposition by projecting on the attributes involved in each FD in
Σ and eliminate non-maximal sets, we get the decomposition

{
(CLT, {C → L,LT → C}),

(CRT, {CT → R, RT → C})
}

While this decomposition is clearly faithful, the subschema

(CLT, {C → L,LT → C})

is not in BCNF as the left hand side C of C → L is not a key for CLT .

Since the schema CLT is not in BCNF, the information who is lecturer of a course is
stored multiple times (once for each lecture time). Thus, in order to change the lecturer of
a course, multiple tuples need to be updated. These problems are avoided by the BCNF
decomposition CL, CRT from example 2.2, but there we lost LT → C which prevented
us from creating tables where a lecturer is supposed to give different courses at the same
time.

The only algorithm to guarantee both faithfulness and BCNF (if possible) proposed
so far by Osborn in [38] is a brute-force approach which always requires exponential time.
To be useful in practice, e.g. in automated design tools, we require more efficient means.

However, given that the problem we are trying to solve is NP-hard, we will not be
able to find a polynomial time algorithm (unless P=NP). A more modest, but realistic
goal would be an algorithm which requires exponential time in some cases, but performs
much better in many of the cases we are interested in. In this chapter we develop such an
algorithm (illustrated in Example 2.11 on page 28), which always finds a faithful BCNF
decomposition if one exists, and computes a faithful decomposition into 3NF otherwise.
The advantage over the approach in [38] is that in most cases our algorithm is much faster.
Some experimental results can be found in the appendix.

2.1 Linear Resolution

The central idea of our approach is to compute all “minimal” FDs in Σ∗. While the
number of such FDs can grow exponentially in the number of attributes and FDs in Σ,
it often turns out to be reasonably small. In this section we develop a fast algorithm for

11

computing the set of all “minimal” FDs, more precisely an algorithm who’s runtime is
linear in the size of the output and polynomial in the input.

In the following R denotes a relation schema with FD set Σ. We will use letters at the
end of the alphabet (. . . , X, Y, Z) to denote subsets of R, while letters at the beginning
(A,B, C, . . .) denote single attributes.

Definition 2.2. We use the following terminology:

(i) A FD X → A is called singular .

(ii) A non-trivial singular FD X → A ∈ Σ∗ is called atomic, if and only if for all Y (X
we have Y → A /∈ Σ∗.

(iii) The atomic closure Σ∗a of Σ is the set of all atomic FDs in Σ∗

(iv) A set G ⊆ Σ∗a of atomic FDs is called canonical cover if it is a cover of Σ which is
minimal w.r.t. set inclusion, i.e., for all H (G the set H is not a cover of Σ.

We will focus on computing the atomic closure Σ∗a, since it is needed for finding a
dependency preserving BCNF decomposition, based on the approach of Osborn [38]. A
detailed description of this will be provided in section 2.2.

Note that atomic FDs have also been called “elemental” FDs [46]. Osborn [38] uses
the atomic closure as well, but without defining any name for it.

Example 2.3. Consider the set of FDs

Σ = {A → B, AB → C, BC → AD}

(i) The FDs A → B and AB → C are singular but BC → AD is not.
(ii) While A → B is atomic, AB → C is not, since A → C ∈ Σ∗.
(iii) For the atomic closure of Σ we get

Σ∗a = {A → B,A → C,BC → A,BC → D,A → D}

(iv) The canonical covers of Σ are

{A → B, A → C, BC → A, BC → D},
{A → B, A → C, BC → A, A → D}

It is well-known that every set of FDs Σ has a canonical cover, and one can easily
compute one by splitting non-singular FDs into singular ones, minimizing their left hand
sides (LHS) and removing redundant FDs [33].

Algorithm for computing a canonical cover

INPUT: set of FDs Σ
OUTPUT: canonical cover Σ′ of Σ

12

Σ′ := ∅
for all X → Y ∈ Σ do

Σ′ := Σ′ ∪ {LHS −minimize(X → A, Σ) | A ∈ Y }
end
for all X → A ∈ Σ′ do

if Σ′ \ {X → A} ² X → A then
Σ′ := Σ′ \ {X → A}

end

proc LHS-minimize(X → Y, Σ)
for all A ∈ X do

if Σ ² (X \ A) → Y then
X := X \ A

end

The existence of a canonical cover immediately implies that Σ∗a is a cover for Σ:

Lemma 2.3. For every set Σ of FDs, the atomic closure Σ∗a of Σ is a cover for Σ.

Proof. Σ has a canonical cover Σ′, which must be a subset of Σ∗a, thus Σ∗a ² Σ′ ² Σ.

2.1.1 The Basic Algorithm

We wish to compute Σ∗a. As we have seen in section 1.1, implication of FDs can be
decided in linear time. However, creating all possible singular FDs on R and testing
whether they are implied by Σ and atomic is inefficient, as the number of singular FDs
on R grows exponentially in the size of R. In order to compute Σ∗a efficiently, we need
some method for deriving new FDs.

A first candidate for this could be the Armstrong axioms from section 1.1:

X → Y
Y ⊆ X,

X → Y

XW → Y W
,

X → Y Y → Z

X → Z

However, the first two rules rule can only derive trivial or non-minimal FDs, which seems
counter-productive to our goal of obtaining minimal, non-trivial FDs. When deriving
minimal FDs, they are only used to bring FDs into a form which allows us to apply
the third (transitivity) rule. Thus, instead of using all three Armstrong axioms, we will
discard the first two rules, but make the transitivity rule more flexible.

In our approach we use a single derivation rule, namely the resolution rule

X → A AY → B

XY → B

which has already been used successfully by Gottlob in [18], and is easily checked to be
sound. This simplifies the derivation of FDs significantly. Consider e.g. the derivation tree
from example 1.1, which derives A → D from the FDs Σ = {A → B, AB → C, BC → D}:

A → B

A → AB

AB → C

AB → ABC

ABC → BC BC → D

ABC → D
AB → D

A → D

13

Using the resolution rule, the derivation becomes much easier:

A → B
AB → C BC → D

AB → D
A → D

Note that the derivation tree (when read from bottom to top) above is right-linear, i.e.,
the left branch always ends in a leaf (a FD in Σ, rather than an arbitrary sub-tree, in this
case A → B and AB → C). We refer to such derivation trees as linear resolution trees.

Definition 2.4. For any application of the derivation rule

X → A AY → B

XY → B

we call

X → A
AY → B
XY → B

 the

substituting
base
derived

 FD.

The following theorem, in which we show that such derivations are possible in general,
is central as it allows us to create a fast algorithm for computing Σ∗a.

Theorem 2.5. Let Σ be a set of singular FDs. Then every atomic FD in Σ∗a can be
derived from Σ using the resolution rule

X → A AY → B

XY → B
(2.1)

This result still holds if we restrict ourselves to derivations where the substituting FDs
X → A lie in Σ, i.e., for every atomic FD Xi → Ai ∈ Σ∗a there exists a linear resolution
tree deriving Xi → Ai from Σ.

Proof. Let X → A ∈ Σ∗a, and thus A ∈ X∗\X. We use the known fact that the “closure”
algorithm works. For any run of the “closure” algorithm let Xi → Ai ∈ Σ, i = 1 . . . k be
the FDs X ′ → Y used to compute X∗ up to the point where A = Ak is added, in that
order. We may assume that the set of FDs used is minimal, i.e., for every Xi → Ai with
i < k the attribute Ai lies in some Xj (with i < j <= k).

We start our derivation with Xk → A(= Ak), and then successively use Xi → Ai for
i = k − 1, . . . , 1 in the resolution rule (2.1):

Xi → Ai Ui+1 → A

Ui → A

In this, the derived left hand sides Ui have the form

Uk = Xk, Ui<k = Xi(Ui+1 \ Ai)

It is easy to see that Uj ⊆ X ∪ {A1, . . . , Aj−1}, and in particular U1 ⊆ X. Since X → A
is atomic, we get U1 = X, thus we have indeed constructed the derivation we wanted.

Note that the intermediate FDs Ui → A during the derivation need not be atomic,
since the Ui need not be minimal. As example 2.4 shows, this is unavoidable when using
the resolution rule.

14

Example 2.4. Consider the set

Σ = {A → B, A → C, BC → D}

The atomic FD A → D cannot be derived using (2.1) without intermediate non-atomic
FDs: The only possible applications of the resolution rule are

A → B BC → D

AC → D
and

A → C BC → D

AB → D
,

and neither AC → D nor AB → D are atomic.

Indeed, no derivation rule of the form considered, which are commonly referred to as
Hilbert-Style derivation rules, always produces atomic FDs. This is because these rules
only consider a subset S ⊆ Σ as premises, but FDs which are atomic w.r.t. S need not
be atomic w.r.t. Σ.

Since we are only interested in atomic FDs, we reduce the left hand side of any FD
we derive by removing attributes that are not needed, or extraneous :

Definition 2.6. Let Σ be a set of FDs and X → Y ∈ Σ∗. We say that an attribute
A ∈ X is extraneous in X → Y w.r.t. Σ if (X \ A) → Y ∈ Σ∗. A FD X → Y without
extraneous attributes in X is called LHS-minimal. For an attribute set X we call A ∈ X
extraneous if it is extraneous in X → X, i.e., if (X \ A) → X ∈ Σ∗.

This leads to the following derivation rule:

X → A AY → B

LMΣ(XY → B)

where LMΣ denotes LHS-minimization w.r.t. Σ. Note that this is not a Hilbert-Style
derivation rule, as it relies on the whole set Σ rather than just the premises. We refer to
the derivation rule above as LM-resolution.

Corollary 2.7. Let Σ be a set of singular FDs. Then every atomic FD in Σ∗a can be
derived from Σ using the LM-resolution rule

X → A AY → B

LMΣ(XY → B)
(2.2)

where the substituting FDs X → A lie in Σ.

Proof. Theorem 2.5 states the same result for the resolution rule 2.1. The FD LMΣ(XY →
B) derived by rule 2.2 implies XY → B, and can replace it in any derivation which uses
XY → B as base FD.

LHS-minimizing FDs immediately can reduce the number of possible derivation se-
quences considerably. This provides us with an efficient algorithm, which we name linear
resolution, that computes the atomic closure Σ∗a of any set of functional dependencies Σ.

15

Algorithm “linear resolution”

INPUT: set of FDs Σ
OUTPUT: atomic closure Σ∗a

compute a canonical cover Σ′ of Σ
Σ∗a := Σ′

for all Y → B ∈ Σ∗a do
for all X → A ∈ Σ′ with A ∈ Y, B /∈ X do

Σ∗a := Σ∗a ∪ {LMΣ((XY \ A) → B)}
end

end

Here the function LMΣ can be computed using the function ”LHS-minimize” described
earlier in section 2.1.

Example 2.5. Starting with the canonical cover

Σ = {C → L, CT → R, LT → C, RT → C}
from examples 2.1 and 2.2, we use resolution:

RT → C C → L

RT → L
,
LT → C CT → R

LT → R

The newly found FDs RT → L and LT → R are already atomic, so we add them to Σ∗a.
We then test whether new resolution steps have become possible:

CT → R RT → L

[CT → L]
,
C → L LT → R

[CT → R]

The FD CT → L can be LHS-minimized to C → L, which has already been found. The
FD CT → R is already contained in Σ∗a as well, so no further atomic FDs can be derived.
We therefore obtain:

Σ∗a = Σ ∪ {RT → L,LT → R}

Theorem 2.8. The “linear resolution” algorithm computes Σ∗a correctly.

Proof. Follows from Corollary 2.7.

We remark that Corollary 2.7 immediately gives us a sound and complete derivation
system for atomic FDs:

X → A AY → B

LMΣ(XY → B)
B /∈ X

However, this system is not a Hilbert-Style axiomatization, and according to the discussion
earlier no such axiomatization exists. For singular FDs an axiomatization exists though.

Corollary 2.9. The following axiom system is sound and complete for singular FDs:

X → A Y → B

X(Y \ A) → B
,

XA → A

16

Proof. It is obvious that the rules are sound. To show completeness, let W → A be any
singular FD in Σ∗. If W → A is trivial it can be derived directly from the second rule.
Otherwise there exists an atomic FD X → A with X ⊆ W , and X → A can be derived
using the first rule by Theorem 2.5. If W 6= X (and thus W 6= ∅) then we derive W → C
for some C ∈ W by the second rule. Now W → A can be derived from W → C and
X → A by another application of the first rule.

Note that the set X in the proof could be empty, so that the resolution rule (2.1)
cannot be applied in the last step. Thus we had to modify it slightly.

2.1.2 Improvements and Complexity Analysis

We now discuss possible improvements and implementation issues for the linear resolution
algorithm. Based on these improvements we present a brief complexity analysis.

In the linear resolution algorithm presented, we select the substituting FDs from a
canonical cover of Σ rather than Σ itself. This cover can be larger than Σ, since splitting
FDs into singular FDs increases the number of FDs. To avoid this, we use the original set
Σ and replace the singular LM-resolution rule (2.2) by the generalized LM-resolution rule

X → Z Y → B

LMΣ(X(Y \ Z) → B)
Z ∩ Y 6= ∅

This generalized rule is then used in the same fashion as rule (2.2) in our linear
resolution approach.

Lemma 2.10. Let Σ be a set of FDs and Σ′ a singular cover of Σ. Then every atomic
FD in Σ∗a can be derived from Σ and Σ′ using the generalized resolution rule

X → Z Y → B

X(Y \ Z) → B
Z ∩ Y 6= ∅ (2.3)

where the substituting FDs X → Z lie in Σ, and the base FDs Y → B are derived or lie
in Σ′.

Proof. Let X → A ∈ Σ∗a = Σ′∗a. Then there exists a FD Y → A ∈ Σ′ with Σ′ ² X → Y ,
and thus Σ ² X → Y . We can then construct a derivation of X → A from Y → A as
in the proof of Theorem 2.5, where the substituting FDs are those used in the closure
computation of X under Σ, up to the point where Y is included, in reverse order.

Corollary 2.11. Let Σ be a set of FDs and Σ′ a singular cover of Σ. Then every atomic
FD in Σ∗a can be derived from Σ and Σ′ using the generalized LM-resolution rule

X → Z Y → B

LMΣ(X(Y \ Z) → B)
Z ∩ Y 6= ∅ (2.4)

where the substituting FDs X → Z lie in Σ, and the base FDs Y → B are derived or lie
in Σ′.

Proof. As for Corollary 2.7.

17

To speed up LHS-minimization of X(Y \ Z) → B, we replace each FD X → Z ∈ Σ
by X → X∗. As this can make FDs in Σ redundant, we then remove such redundant
FDs. Note that this turns Σ into a minimal cover , i.e., a cover with a minimal number
of FDs [40]. This is clearly a bonus, since lowering the number of potential substituting
FDs reduces the number of rule applications.

For our next optimization, we partition the set Σ∗a into sets Σ∗a
A , where

Σ∗a
A := {W → A ∈ Σ∗a}

The set Σ∗a
A of all atomic FDs with right hand side A can be computed independently

from atomic FDs with other RHSs, as the derivation (using linear resolution) of a FD in
Σ∗a

A only uses substituting FDs in Σ and base FDs in Σ∗a
A .

Computation of Σ∗a
A can now be optimized, by reducing the set ΣA ⊆ Σ from which

substituting FDs need to be chosen. For this we first initialize ΣA with Σ, and then remove
all FDs X → Z ∈ ΣA with A ∈ X∗. If A /∈ X (otherwise X → A would be trivial), then
we add LMΣ(X → A) to the initial set Σ∗a

A of base FDs. This still allows us to derive all
FDs in Σ∗a

A , since any application of (2.4) using X → Z with A ∈ X∗ as substituting FD
could result in the FD LMΣ(X → A), which is either trivial or already contained in the
initial set.

Our optimized linear resolution algorithm is given next.

Algorithm “linear resolution” revised

INPUT: set of FDs Σ
OUTPUT: atomic closure Σ∗a

Σ := {X → X∗ | X → Z ∈ Σ}
for all X → Z ∈ Σ do

if Σ \ {X → Z} ² X → Z then
Σ := Σ \ {X → Z}

end
for all A ∈ RHS(Σ) :=

⋃
X→Z∈Σ

Z do

Σ∗a
A := ∅, ΣA := ∅

for all X → Z ∈ Σ do
if A /∈ X∗ then

ΣA := ΣA ∪ {X → Z}
else if A /∈ X then

Σ∗a
A := Σ∗a

A ∪ {LMΣ(X → A)}
end
for all Y → A ∈ Σ∗a

A do
for all X → Z ∈ ΣA with Y ∩ Z 6= ∅ do

Σ∗a
A := Σ∗a

A ∪ {LMΣ(X(Y \ Z) → A)}
end

end
end
Σ∗a :=

⋃
Σ∗a

A

18

Theorem 2.12. The revised “linear resolution” algorithm computes Σ∗a correctly.

Proof. Follows from Corollary 2.11 and the arguments above.

Before we give a complexity analysis, we need to point out an implementation issue
which has been completely ignored so far. When adding a new FD U → A to Σ∗a

A , we need
to check whether U → A is already contained in Σ∗a

A . Since Σ∗a
A can potentially be large,

we require an implementation for sets which allows us to add or remove elements and
check containment quickly. While a simple hash table implementation would be sufficient
for practical purposes, it can potentially degenerate, resulting in poor worst-case behavior.
For the sake of a proper theoretical analysis, we present a data structure for storing the
LHSs of FDs in Σ∗a

A which always allows for fast updates and containment checking. Note
that it suffices to store the LHSs of FDs in Σ∗a

A , since we know that their RHS is A.

Data Structure. Let R = {A1, . . . , Ak}. We will represent a subset S ⊆ P(R) of the
powerset of R by a binary tree T (S) of height k +1 (or 0 if S = ∅). To describe this
representation, we identify each of the 2k+1 − 1 potential nodes of this tree with a
binary string of length at most k, in such a way that the string of a node’s parent is
obtained by removing the last bit from the child node’s string. Similarly, we identify
each subset s ∈ P(R) of R with a binary string of length k, where the i-th bit is 1
iff Ai ∈ s. Then the binary tree T (S) representing S is constructed as follows: For
each s ∈ S add the node with the same identifying string as s to T (s), as well as all
its ancestor nodes.

With this representation, adding or removing a set s to S, or checking whether s lies in
S already, can be performed in O(k). This is done by starting at the root, and following the
path described by the identifying string of s, which leads to the corresponding potential
node.

We will now give a brief complexity analysis.

Lemma 2.13. The revised “linear resolution” algorithm runs in time O(f · k2n2), where

k = number of attributes in R
n = number of FDs in Σ
f = number of FDs in Σ∗a

Proof. Computing X∗ for each X → A ∈ Σ can be performed in O(kn2), given that each
X∗ can be computed in O(kn) using the “closure” algorithm [5]. Checking whether a FD
is implied also requires only one closure computation, so that the first five lines, which
turn Σ into a minimal cover, only require O(kn2) steps.

Each test whether an attribute is extraneous requires one run of the ”closure” al-
gorithm. Thus each LHS-minimization takes at most O(k2n) operations. These LHS-
minimizations are the most time consuming steps, so that it suffices to count how often
they need to be performed.

Initializing the sets Σ∗a
A , ΣA takes at most n calls of LMΣ. Computing Σ∗a

A requires at
most fA · n resolution steps, where fA is the number of FDs in the final set Σ∗a

A , and each
resolution step calls LMΣ once. Thus LMΣ is called at most

∑
fA · n = f · n

times in total, leading to an overall complexity of O(f · k2n2).

19

Note that the algorithm is not polynomial in the size of the input (which lies between
k +n and k ·n), since f can be exponential in n and k. However, for outputs of moderate
size, i.e., whenever f does not grow too large, our algorithm performs well. Experimental
results can be found in the appendix.

We will establish some simple bounds on the size of f next.

2.1.3 Polynomial Cases

While the size of the atomic closure can be potentially exponential in the size of Σ, it
is often much smaller. A reason for this is that the left hand sides (LHSs) of functional
dependencies are often small. It is estimated that the majority of FDs occurring in practice
contain only a single attribute in their LHS.

Definition 2.14. We call a FD X → Y unitary if X consists of a single attribute.

We now establish some upper bounds for the size of Σ∗a, depending on the number
and size of non-unitary FDs in Σ. For this purpose, the size of a FD or set of FDs is the
number of attributes appearing in it, counting each attribute as often as it occurs.

Lemma 2.15. If Σ contains only unitary FDs, then Σ∗a is polynomial in the size of Σ.

Proof. Since all FDs in Σ are unitary, all FDs in Σ∗a are unitary as well, as they can all
be derived using the linear resolution rule. The number of FDs in Σ∗a is thus bounded by
k2, where k is the number of attributes occurring in Σ.

Note however, that allowing for even a single non-unitary FD in Σ can make Σ∗a

exponential in Σ again.

Example 2.6. Consider the set of FDs

Σ = {A1 → B1, . . . , An → Bn, B1 . . . Bn → C}
Σ contains only a single non-unitary FD, but Σ∗a contains over 2n FDs.

The exponential growth of Σ∗a in example 2.6 was due to the FD B1 . . . Bn → C with
large LHS. Instead of restricting the number of non-unitary FDs, we could restrict the
size of their LHSs. However, as the next example shows, this alone is not sufficient.

Example 2.7. Let

Σ =

A(1,v)A(2,v) → A(1,v−1), . . . , A(2v−1,v)A(2v ,v) → A(2v−1,v−1),

A(1,v−1)A(2,v−1) → A(1,v−2), . . . , A(2v−1−1,v−1)A(2v−1,v−1) → A(2v−2,v−2),

. . .

A(1,1)A(2,1) → A(1,0),

B1 → A(1,v), . . . , B2v → A(2v ,v)

Then all FDs in Σ have at most 2 attributes in their LHS. However, they imply the atomic
FD

A(1,v)A(2,v) . . . A(2v ,v) → A(1,0)

with 2v attributes in its LHS. Using the FDs

B1 → A(1,v), . . . , B2v → A(2v ,v)

we can derive 22v
different atomic FDs, showing that Σ∗a is exponential in Σ (whose size

is merely of order 2v).

20

To guarantee that Σ∗a is only of polynomial size, we must not only limit the size of
the LHSs of FDs in Σ, but also of those in Σ∗a. We will see that this can be done by
restricting both the number of non-unitary FDs in Σ and the size of their LHSs.

Definition 2.16. We define the width of a FD X → Y with X 6= ∅ as

width(X → Y) := |X| − 1

In particular all unitary FDs have width zero. We define the width of a FD ∅ → Y as
zero as well. Furthermore, the width of a set Σ of FDs is

width(Σ) :=
∑

X→Y ∈Σ

width(X → Y)

Note that limiting the number of non-unitary FDs (not considering FDs with empty
LHS) in Σ and their width is the same as limiting their total width, i.e., the width of Σ. If
Σ has width W , then it contains at most W non-unitary FDs, and no FD in Σ has width
greater than W . On the other hand, if Σ contains no more than n non-unitary FDs, and
no FD in Σ has width greater than W , then the width of Σ is bounded by n ·W .

Note also that the width Σ is a lower bound for its size, though no function of the
width is an upper bound for the size. This is because unitary FDs do not add to the
width, but do add to the size of Σ.

Lemma 2.17. Let Σ be a set of FDs. Then for all FDs X → A ∈ Σ∗a we have

width(X → A) ≤ width(Σ)

Proof. Every atomic FD in Σ∗a can be derived from Σ by applying the generalized reso-
lution rule (2.3):

X → Z Y → A

X(Y \X∗) → A
Z ∩ Y 6= ∅

in a linear fashion. The widths of the FDs involved in an application of the generalized
resolution rule can be related as follows:

width(X(Y \X∗) → A) ≤ width(X → Z) + width(Y → A)

As any FD in Σ is used in deriving a FD in Σ∗a at most once, the lemma follows.

Lemma 2.18. Let R be a schema with k attributes. Then the number of non-trivial
singular FDs on R of width at most W is less than kW+2.

Proof. Consider the function

f :
RW+2 → {non-trivial singular FDs on R of width at most W}

(A1, . . . , AW+2) 7→ {A1, . . . , AW+1} \ {AW+2} → AW+2

Clearly f is surjective but not injective, thus the target domain contains less elements
than the source domain RW+2, which contains kW+2 elements.

We can now generalize Lemma 2.15.

21

Theorem 2.19. Consider all sets Σ of FDs with width(Σ) ≤ W for some fixed constant
W . Then the size of Σ∗a is polynomial in the size of Σ.

Proof. By Lemma 2.17 all FDs in Σ∗a have width at most W . Let k be the number of
attributes appearing in Σ. By Lemma 2.18 there exist less than kW+2 non-trivial singular
FDs of width at most W , using only those k attributes. They form a superset of Σ∗a and
thus bound its size. Since kW+2 is polynomial in the size of Σ, this shows the theorem.

Corollary 2.20. Consider all sets Σ of FDs with width(Σ) ≤ W for some fixed constant
W . The (revised) “linear resolution” algorithm operates on them in polynomial time.

Proof. Follows immediately from Lemma 2.13 and Theorem 2.19.

Note that, while the upper bound of kW+2 on the cardinality of Σ∗a has been useful for
establishing some theoretical results, it is usually far too large to be used as an estimate
(say, for estimating runtime in advance). Consider e.g. the set of FDs

Σ = {C → L, CT → R, LT → C, RT → C}

from examples 2.1, 2.2 and 2.5. We get k = 4 and W = 3, which provides us with an
upper bound of 43+2 = 1024, although we have seen that Σ∗a only contains 6 FDs.

Finally, we want to stress that Corollary 2.20 does not state that computing Σ∗a is
fixed parameter tractable (FPT) in the width of Σ, as introduced by Downey and Fellows
in [13]. To be FPT in W , the runtime of an algorithm would need to be bounded by
f(W) · P (size(Σ)) for some function f and some polynomial P . This is not the case for
the bound kW+2 · k2n2 we established, and the following variation of example 2.6 shows
that Σ∗a can grow too large to allow computations to be FPT in the width.

Example 2.8. Consider the set of FDs

Σ =

B1 . . . Bn → C,
A1,1 → B1, A2,1 → B1, . . . , Ak,1 → B1,

...
A1,n → Bn, A2,n → Bn, . . . , Ak,n → Bn

The width of Σ is W = n − 1, and the size S = 2nk + n + 1, but Σ∗a contains over kn

FDs. It is easy to see that kn is not bounded by any f(W) · P (S).

2.1.4 Updating the Atomic Closure

In this section we address the question how to update Σ∗a, once computed, when Σ
changes. If possible we would like to avoid recomputing Σ∗a from scratch. We begin by
noting that small changes to Σ can cause large changes in Σ∗a.

Example 2.9. Consider the set of atomic FDs

Σ = {A1 → B1, . . . , An → Bn}

Clearly Σ∗a = Σ. However, if we add the FD B1 . . . Bn → C to Σ, then the new Σ∗a

contains a total of 2n new atomic FDs. These are obtained by substituting any number
of attributes Bi in B1 . . . Bn → C by the corresponding Ai.

22

The same can happen when removing FDs from Σ.

Example 2.10. Consider the set of atomic FDs

Σ = {AB1 → C1, . . . , ABn → Cn, C1 . . . Cn → D,A → D}

Again, Σ∗a = Σ. If we remove A → D from Σ, it also gets removed from Σ∗a, but Σ∗a

now contains 2n− 1 new FDs. These are obtained by substituting any positive number of
attributes Ci in C1 . . . Cn → D by the corresponding ABi. As A → D is no longer implied
by Σ, the resulting FDs are now atomic.

We cannot hope to update Σ∗a quickly if the changes required to it are large, but if
Σ∗a changes only by a few FDs, we might be able to do better. We consider two types of
changes to Σ, depending on whether FDs get added to or removed from Σ. To distinguish
Σ before and after the changes, we will denote the changed set by Σ+ or Σ−, respectively.

If we only add FDs to Σ, i.e., Σ ⊆ Σ+, then all FDs in Σ∗a will still lie in Σ∗
+, though

their left hand side may not be minimal. It is however easy to LHS-minimize them to
atomic FDs in Σ∗a

+ , using the algorithm from section 2.1. Let ΣLM := LMΣ+(Σ∗a) denote
some set we might get when LHS-minimizing all FDs in Σ∗a w.r.t. Σ+. By performing this
LHS-minimization we ensure that for every FD X → A which can be derived by resolution
from a base FD in Σ∗a and a substituting FD in Σ, the set ΣLM contains a ”stronger”
FD U → A with U ⊆ X. Therefore we do not have to apply any of those resolution steps
again. We can obtain Σ∗a

+ by linear resolution starting with ΣLM ∪ (Σ+ \Σ) as base FDs,
but using a FD in ΣLM as base FD only in combination with a substituting FD in Σ+ \Σ.

For the sake of simplicity, we adapt only the basic “linear resolution” algorithm to
perform this update, although the improvements used in the revised version could be
applied here as well.

Algorithm “update atomic closure”

INPUT: sets of singular FDs Σ ⊆ Σ+, atomic closure Σ∗a

OUTPUT: atomic closure Σ∗a
+

ΣLM := LMΣ+(Σ∗a)
Σ∗a

+ := ΣLM ∪ LMΣ+(Σ+ \ Σ)
for all Y → B ∈ Σ∗a

+ do

for all X → A ∈
{

Σ+ if Y → B /∈ ΣLM

Σ+ \ Σ if Y → B ∈ ΣLM

}
with A ∈ Y,B /∈ X do

Σ∗a
+ := Σ∗a

+ ∪ {LMΣ+((XY \ A) → B)}
end

end

The terms LMΣ+(. . .), which denote LHS-minimization w.r.t. Σ+, can be computed
using the function ”LHS-minimize” from section 2.1. To analyze the complexity of this
update algorithm, let

k := |R|,
n := |Σ|, n+ := |Σ+|, n∆ := n+ − n,
f := |Σ∗a|, f+ := |Σ∗a

+ |, f∆ := |Σ∗a
+ \ Σ∗a|

23

A single FD can be LHS-minimized w.r.t. Σ+ in O(k2 · n+), so ΣLM can be computed
in O(f · k2 · n+). In return, the number of resolution steps to perform is bounded by
f · n∆ + f∆ · n+ (rather than f+ · n+ as we would get by computing Σ∗a

+ from scratch),
which is small if f∆ and n∆ are small. Each of the derived FDs needs to be LHS-minimized,
which leads to a total complexity of

O((f · n∆ + f∆ · n+) · k2 · n+)

Note that if Σ∗a ⊆ Σ∗a
+ , the only extra work performed by computing Σ∗a first and then

updating rather than computing Σ∗a
+ directly is the computation of ΣLM (which would

not even be necessary if we knew beforehand that Σ∗a ⊆ Σ∗a
+).

This approach does not work, however, when FDs get removed from Σ. To explain this,
let us compare the cases of Σ+, where FDs get added, and Σ−, where they get removed.
The essential problem in reusing Σ∗a is that we LHS-minimized the derived FDs w.r.t.
the wrong set Σ, instead of Σ+ or Σ−. In the first case this could easily be corrected by
LHS-minimizing again, this time w.r.t. Σ+. In the latter case, however, we would need to
“undo” some LHS-minimization steps. It is not clear how this could be done efficiently,
considering that for a FD U → A ∈ Σ∗a we would need to compute all X ⊃ U for which
X → A could have been derived using linear resolution.

However, one would expect that in practice it is more common that new FDs are
added, which have been overlooked previously. At other times, a designer may be given
a set of FDs Σ1 which are known to hold, whereas a second set of FD Σ2 are expected
to hold, but whether they really do is not certain. In such a case, we could first compute
Σ∗a

1 , and then update it to (Σ1 ∪ Σ2)
∗a, storing both sets. This way, if some FDs from Σ2

later turn out to be invalid, one can compute (Σ1 ∪ (Σ2 \ {. . .}))∗a from Σ∗a
1 , which might

save at least some work. Obviously this approach can be generalized if we have more than
two sets of FDs, which are ordered w.r.t. confidence in them.

2.1.5 Other Applications

The linear resolution algorithm can also be used to compute all minimal left hand sides
X for any given right hand side Y , i.e., all minimal X with X → Y ∈ Σ∗.

Theorem 2.21. Let Σ be any set of singular FDs over R and Y ⊆ R. Then any FD
X → Y ∈ Σ∗ with minimal left hand side X can be derived from Y → Y using linear
resolution.

Proof. Let X be minimal with X → Y ∈ Σ∗. For every Ai ∈ Y \X there exists a minimal
Xi ⊆ X with Xi → Ai ∈ Σ∗a. By Theorem 2.5 every Xi → Ai ∈ Σ∗a has a linear
resolution tree in Σ. Combining these resolution trees to substitute all Ai ∈ Y \ X in
the LHS of Y → Y (possibly skipping some if the attribute Ai has been eliminated in an
earlier step) yields a linear resolution of X ′ → Y for some X ′ ⊆ ⋃

Xi ⊆ X. Since X is
minimal X ′ = X.

In particular, linear resolution can be used to compute all minimal keys of a relation,
and thus all prime attributes.

As well, the atomic closure Σ∗a can be used to compute the atomic closure of the
projection of Σ∗ over some subschema S, using the following simple lemma:

24

Lemma 2.22. Let S ⊆ R be a subschema and Σ a set of FDs over R. Then

(Σ∗[S])∗a = Σ∗a[S]

Proof. A non-trivial singular FD X → A on S is atomic w.r.t. Σ if and only if it is
contained in Σ∗ (and thus in Σ∗[S]), and for any true subset U (X the FD U → A is not
contained in Σ∗ (equivalently, in Σ∗[S]), i.e., if and only if it is atomic w.r.t. Σ∗[S].

Since the atomic closure (Σ∗[S])∗a is a cover for Σ∗[S] by Lemma 2.3, we can use
Lemma 2.22 to compute covers for subschemas. For this we first compute Σ∗a using linear
resolution, and then project it onto the subschema. Note that this approach is particularly
efficient if we have already computed Σ∗a for other purposes.

2.1.6 Related work

A similar method for deriving all minimal keys has been described by Lucchesi and Osborn
in [31]. However, while they derive keys in the same manner, i.e., by using the resolution
rule (2.1) in a linear fashion, they do not consider linear resolution as a general method
for deriving minimal LHSs. Furthermore, their algorithm includes an extra step which
checks for inclusion between derived keys, which makes the approach less efficient for large
sets Σ∗a.

Another similar algorithm was published even earlier by Fadous and Forsyth in [14],
although their description is not always clear, and the algorithm does not avoid non-
minimal intermediate keys. It is similar to linear resolution without minimization of
derived LHSs.

In [18] Gottlob presents a different algorithm for computing covers on subschemas,
which also uses the resolution rule for deriving new FDs. This is done in a non-linear
fashion, which results in more resolution steps to be checked. In exchange, other opti-
mizations are applied, which however do not work with linear resolution.

The approach taken by Mannila and Räihä in [37] is in some ways similar to ours. For
a set X ⊆ R and an attribute A ∈ R they define the set

max(X,A) := {Y ⊆ X \ A | Y is a maximal set such that Y 9 A}
of all maximal attribute sets which do not determine A. The sets max(R, A) and max(X, A)
can be used to test whether A is prime, and whether a subschema X is in BCNF or 3NF. In-
stead of computing max(X,A) directly for every subschema X, they compute max(R,A)
using an algorithm given in [35], and then obtain max(X, A) as follows:

max(X, A) = maximal sets in {Y ∩X | Y ∈ max(R, A)}
To compare this with our work, let us define

min(X,A) := {Y ⊆ X \ A | Y is a minimal set such that Y → A}
= {Y ⊆ X | Y → A ∈ Σ∗a}

so that the sets min(R, A) together form an equivalent description of Σ∗a.
The sets max(X, A) and min(X, A) are simple hypergraphs on X (see section 3.1),

and it is easy to show (as in [22]) that they are related as follows:

min(X, A) = Tr(max(X,A))

25

or equivalently
max(X,A) = Tr(min(X,A))

where H = {X \ Y | Y ∈ H} and Tr(H) is the transversal hypergraph of H.
For every simple hypergraph H on R \ A there exists a set Σ of FDs on R such that

min(R, A) = H and another one such that max(R,A) = H. Thus, neither set is larger
or smaller than the other in general, and due to the symmetry in their relationship we
would expect them to be equally large “on average”.

However, we want to highlight some advantages of our approach:

• The set Σ∗a and correspondingly min(R,A) is not dependent on R but only on Σ,
that is, we can add extra attributes to R without changing min(R,A). In contrast,
extra attributes get added to all sets in max(R,A). However, this is just a matter
of elegance, not of efficiency.

• Obtaining min(X, A) from min(R,A) is easier than obtaining max(X, A) from
max(R, A). In the latter case, all sets X ∩ Y need to be checked for maximality.

• We can use Σ∗a for computing a cover on subschemas, and for synthesizing decom-
positions (see section 2.2).

• While min(R, A) can be computed in time polynomial (even linear) in the size of the
output min(R, A) using linear resolution, the algorithm given in [35] for computing
max(R, A) does not have this property. As far as we know, it is still an open question
whether an output-polynomial algorithm for computing max(R, A) exists.

2.2 Faithful BCNF Decomposition

In the following we will use the atomic closure Σ∗a to construct a faithful BCNF decompo-
sition D, provided it exists. In this we take a similar approach as was taken by Osborn in
[38]. The main difference to the algorithm given in [38] is that we compute Σ∗a efficiently
using linear resolution, rather than using brute force as was done in [38].

2.2.1 The Basic Algorithm

When synthesizing a decomposition from a set of FDs Σ, we create a schema XY for
every FD X → Y ∈ Σ. This ensures that the decomposition is faithful, though it might
not be in BCNF. To obtain a BCNF decomposition, we must use a cover of Σ with the
“right” FDs, so that the subschemas created are in BCNF.

Definition 2.23. A FD X → Y ∈ Σ∗ is called critical w.r.t. Σ if XY is not in BCNF
w.r.t. Σ∗[XY]. A cover G of Σ is called critical if it contains a critical FD. A FD or cover
that is not critical is called uncritical.

Theorem 2.24. The following are equivalent:

(i) A schema (R, Σ) has a faithful and lossless decomposition into BCNF

(ii) Σ has an uncritical cover Σ′ ⊆ Σ∗

(iii) Σ has an uncritical atomic cover Σ′′ ⊆ Σ∗a

26

Proof. (ii) → (i) : If Σ has an uncritical cover Σ′, then we can synthesize a faithful BCNF
decomposition D by creating a schema XY for every X → Y ∈ Σ′, and if necessary add
a minimal key to D to make the decomposition lossless (Lemma 2.1).

(i) → (ii) Now let D = {R1, . . . , Rn} be a faithful BCNF decomposition of (R, Σ),
and Σi be the FD set associated with Ri. Since D is faithful, the union Σ′ :=

⋃
Σi of

all FDs on the subschemas forms a cover of Σ. For each FD X → Y ∈ Σ′ the schema
XY is a subschema of some Ri. Since Ri is in BCNF, so are all of its subschemas (in
particular XY), which means X → Y is uncritical. This makes Σ′ an uncritical cover of
Σ as required.

(ii) → (iii) We can construct an uncritical atomic cover Σ′′ of Σ′, which is then a
cover of Σ as well, as follows: For each FD X → Y ∈ Σ′ and each Ai ∈ Y \X there exists
a minimal Ui ⊆ X such that Ui → Ai ∈ Σ∗. Each such FD Ui → Ai is atomic, and since
UiAi ⊆ XY , it is uncritical. Furthermore, Σ′′

X→Y := {Ui → Ai | Ai ∈ Y \ X} implies
X → Y , therefore Σ′′ :=

⋃
X→Y ∈Σ′

Σ′′
X→Y is a cover of Σ′, and thus an uncritical atomic

cover of Σ.

Testing whether a FD X → A is critical by computing and examining all FDs in
Σ∗[XA] as the definition suggests is tedious. Instead, we use the well-known fact (e.g.
[36]) that for testing BCNF it suffices to use a cover of Σ∗[XA]:

Lemma 2.25. A schema R is in BCNF w.r.t. Σ if and only if it is in BCNF w.r.t. every
cover Σ′ of Σ.

Once we have computed the atomic closure of Σ, we can easily find a cover for Σ∗[S]
using Lemma 2.22, as described in section 2.1.5. This gives us the following test whether
a FD is critical:

Lemma 2.26. A FD X → A is critical w.r.t. Σ if and only if there exists a FD Y →
B ∈ Σ∗a with Y B ⊆ XA and XA * Y ∗.

Proof. X → A is critical if and only if XA is not in BCNF w.r.t. Σ∗[XA]. By Lemma 2.25
this holds for every cover of Σ∗[XA]. By Lemma 2.3 (Σ∗[XA])∗a is a cover for Σ∗[XA],
and by Lemma 2.22 we have

(Σ∗[XA])∗a = Σ∗a[XA] = {Y → B ∈ Σ∗a | Y B ⊆ XA}.
By definition XA is not in BCNF w.r.t. (Σ∗[XA])∗a if and only if (Σ∗[XA])∗a contains a
(non-trivial) FD Y → B for which Y is not a key, i.e., XA * Y ∗.

Guided by Theorem 2.24, we try to find an uncritical canonical cover Σ′ of Σ as follows:
for each X → A ∈ Σ∗a we check whether it is critical, and if so whether it is redundant
w.r.t. the remaining FDs in Σ∗a. If it is redundant we discard it, otherwise we can be
sure that there exists no uncritical atomic cover, and thus no faithful and lossless BCNF
decomposition. If all critical FDs in Σ∗a are redundant, i.e., the uncritical FDs in Σ∗a

form a cover of Σ, we can create Σ′ from the remaining FDs by eliminating redundant
ones.

We then apply the “3NF Synthesis” algorithm from section 1.2 using this cover, i.e., our
decomposition will consist of those subschemas XA where X → A ∈ Σ′, plus a minimal
key if needed. Thus, even if no uncritical cover is found, we obtain a decomposition into
3NF [10].

27

Algorithm “least critical cover synthesis”

INPUT: set of FDs Σ on schema R
OUTPUT: decomposition D of R

D := ∅
compute Σ∗a using linear resolution
Σ′ := Σ∗a

for all X → A ∈ Σ′ do
if critical(X → A, Σ∗a) then

if X → A ∈ (Σ′ \ {X → A})∗ then
remove X → A from Σ′

end
for all X → A ∈ Σ′ do

if X → A ∈ (Σ′ \ {X → A})∗ then
remove X → A from Σ′

else
add schema XA to D

end
remove all schemas Ri ∈ D with Ri (Rj ∈ D
if D contains no key of R, add a minimal key

function critical(X → A, Σ∗a)
for all Y → B ∈ Σ∗a do

if Y B ⊆ XA and XA * Y ∗ then
return true

end
return false

Note that in the algorithm given above we combined the removal of redundant uncrit-
ical FDs in Σ′ and the synthesis of schemas from FDs not removed into one loop. The
algorithm “3NF Synthesis” is thus reflected in the lines

add schema XA to D
· · ·
if D contains no key of R, add a minimal key

We illustrate the algorithm by continuing our example.

Example 2.11. Consider again the schema CLRT from examples 2.1, 2.2 and 2.5 with

Σ = {C → L, CT → R, LT → C, RT → C}
In example 2.5 we have already computed the atomic closure of Σ:

Σ∗a = Σ ∪ {RT → L,LT → R}
Checking all FDs in Σ∗a, we find that only LT → C is critical (due to C → L), and that it
is redundant. Eliminating further redundant FDs leads to the uncritical canonical cover

{C → L,RT → C,LT → R}

28

which gives us the faithful BCNF decomposition:

{CL,CRT, LRT}

Theorem 2.27. The “least critical cover synthesis” algorithm computes a faithful, lossless
BCNF decomposition D of R iff such a decomposition exists.

Proof. Initially, the set Σ′ forms a cover for Σ. During the computation, only redundant
FDs are removed from Σ′, thus Σ′ is still a cover in the end. Each FD in Σ′ is contained
in some schema Ri ∈ D, which makes the decomposition faithful. Since D contains a
subschema which forms a key of R, the decomposition is lossless by Lemma 2.1.

Assume now that D is not in BCNF. The only schema in D which might not be induced
by a FD from Σ′ forms a minimal key, which is automatically in BCNF. Thus Σ′ must
contain some critical FD. But since we removed as many critical FDs as possible while
maintaining a cover, every atomic cover of Σ must contain critical FDs. Therefore no
faithful, lossless BCNF decomposition exists by Theorem 2.24.

2.2.2 Improvements and Complexity Analysis

While the improvements which we shall present in the following reduce the runtime of our
“least critical cover synthesis” algorithm considerably, they do not improve its worst-case
complexity behavior. We therefore begin with a brief complexity analysis.

Computation of Σ∗a can be done in O(f · k2n2) as described earlier. Pre-computing
Y ∗ for each Y → B ∈ Σ∗a can be done in O(f · kn) using the ”closure” algorithm, so that
the condition

Y ⊆ XA and XA * Y ∗

can be tested in O(k). The number of such tests is at most f 2, leading to a complexity
of O(f 2 · k). The redundancy test

X → A ∈ (Σ′ \ {X → A})∗

can be performed in O(f · k) using the “closure” algorithm. At most f such tests are
performed (both loops combined), which again gives us O(f 2 · k) as bound. Since D
contains at most f schemas, removal of included schemas from D can be performed in
O(f 2 ·k) as well. Checking whether D contains a key can be done in O(f ·kn). A minimal
key can be found in O(k2n) by starting with the trivial key R and testing for each attribute
whether it can be removed while maintaining a key of R. Adding these complexities up
leads to an overall bound of

O(f · k2n2 + f 2 · k)

We want to reduce the number of FDs for which we check for criticality and redun-
dancy. Furthermore, we often do not start with a single relation schema, but rather with
a decomposition from an earlier design. This decomposition is reflected by the form of the
FDs given. It is usually desirable to keep the cover Σ′ produced as close to the original
cover Σ as possible, as this will lead to a decomposition which is similar to the original
design.

We do so by maintaining a cover ΣR, which gets initialized with an atomic cover of
Σ, which (if Σ is not already atomic) we obtain by splitting FDs into singular ones and

29

minimizing their LHSs, as described in section 2.1. We then check all FDs in ΣR for
being critical. If we find a critical one, we need to check whether it is redundant, and if
so, substitute it for one or more non-critical ones from Σ∗a (or from a “suitable” subset
Σ′ ⊆ Σ∗a).

These two tasks can be combined: when checking whether X → A ∈ ΣR is redundant
by computing the closure X∗ (up to the point where A is added), we check any FD to be
used for criticality (discarding FDs tested critical to avoid double-testing) and use only
non-critical ones. If X → A turns out to be redundant, we replace it by the FDs used in
computing the closure.

Algorithm “substitute FD”

INPUT: sets of FDs ΣR, Σ′ ⊆ Σ∗a, FD X → A ∈ ΣR

OUTPUT: modified ΣR, Σ′: X → A substituted by uncritical set of FDs Subst ⊆ Σ′

(if possible), Subst and critical FDs get removed from Σ′

X∗ := X,Subst := ∅
while A /∈ X∗ do

if ∃Y → B ∈ ΣR \ {X → A} with Y ⊆ X∗, B /∈ X∗ then
add B to X∗

else
if ∃Y → B ∈ Σ′ with Y ⊆ X∗, B /∈ X∗ then

if Y → B critical then
remove Y → B from Σ′

else
add B to X∗

add Y → B to Subst
else

return “X → A not redundant in ΣR”
end
ΣR := (ΣR\{X → A}) ∪ Subst
Σ′ := Σ′\Subst

Note that the data structure described in [5] to speed up the “closure” algorithm can
also be used to quickly perform the check

∃Y → B ∈ ΣR \ {X → A} with Y ⊆ X∗, B /∈ X∗

and is thus a desirable implementation.

The remaining task is the same as before: We remove redundant FDs and create
schemas to hold the remaining ones. This gives us the following algorithm, where “sub-
stitute(. . .)” denotes a call of algorithm “substitute FD”, and “critical” is the function
defined in algorithm “least critical cover synthesis”.

30

Algorithm “least critical cover synthesis” revised

INPUT: set of atomic FDs Σ on schema R
OUTPUT: decomposition D of R

ΣR := Σ
compute Σ′ := Σ∗a \ ΣR

for all X → A ∈ ΣR do
if critical(X → A) then

substitute(ΣR, Σ′, X → A)
end
for all X → A ∈ ΣR do

if X → A ∈ (ΣR \ {X → A})∗ then
remove X → A from ΣR

else
add schema XA to D

end
remove all schemas Ri ∈ D with Ri (Rj ∈ D
if D contains no key of R, add a minimal key

Having constructed D, we can attempt to merge schemas, meaning that we replace
two schemas Ri, Rj ∈ D by Ri∪Rj, if this is desired (e.g. to avoid unnecessary duplication
of attributes). To ensure that we still get a faithful and lossless BCNF decomposition, we
only need to check whether Ri ∪Rj is in BCNF, since merging schemas clearly preserves
FDs and keeps the decomposition lossless. This check can be done using Lemma 2.22.

Note that we only need to check whether Ri and Rj can be merged if they have the
same closure, i.e., if R∗

i = R∗
j , since otherwise we can be sure that Ri∪Rj is not in BCNF.

2.2.3 Partial Determination Cycles

Sometimes the atomic closure is large, although it is easy to see that a faithful BCNF
decomposition exists.

Example 2.12. Consider the set of FDs

Σ = {A1 → B1, . . . , An → Bn, B1 . . . Bn → C}

Clearly Σ is uncritical, but Σ∗a contains 2n + n elements. The 2n − 1 elements of Σ∗a not
already contained in Σ can be obtained by substituting any number of attributes Bi in
B1 . . . Bn → C with the corresponding Ai.

In such cases, it would be nice if we could quickly decide that Σ is already uncritical
and not compute the atomic closure. At other times we would not really need all of Σ∗a

in order to decide whether a faithful BCNF decomposition exists.

Example 2.13. Let Σ be as in example 2.12, and Σ′ be any set of FDs on attributes not
appearing in Σ. Then Σ∪Σ′ is critical iff Σ′ is critical, and Σ∪Σ′ has an uncritical cover
iff Σ′ has an uncritical cover.

31

In the following we will develop some criteria that sometimes allow us to avoid com-
puting all of Σ∗a. The basic idea is the following: If an atomic FD X → A is critical, it
must contain some other atomic FD Y → B, with A ∈ Y ⊂ XA, B ∈ X. Thus there is
a cycle between A and B in the sense that A is used to determine B, and vice versa. If
an atomic FD participates in no such cycle, then it is never contained in another atomic
FD, and thus not needed for checking criticality. We will show that it will not be needed
to substitute a critical FD either, so that we can avoid computing FDs with this property
entirely.

A similar approach was taken by Majster-Cederbaum in [34], where the complete
absence of cycles was used as a sufficient but not necessary condition for the existence of
a faithful BCNF decomposition. This condition can be checked in polynomial time.

Definition 2.28. Let Σ be a set of FDs and A,B be attributes. We say that A partially
determines B, written A

p→ B, if Σ contains a FD X → Y with A ∈ X, B ∈ Y . We
denote the “partially determines” relation w.r.t. Σ by RΣ.

As relations can be regarded as directed graphs, we use terminology from graph theory.
For us a cycle is a directed path which starts and ends at the same vertex. An important
point to note is that we allow vertices and arcs to appear multiple times in a cycle. The
reason for using such a general notion of cycle may not be obvious, since critical atomic
FDs always participate in a cycle which visits vertices and arcs only once (even stronger:
a cycle of length two). However, it turns out that it is easier to check whether two vertices
participate in a general cycle, because this property is transitive: If A,B lie in a cycle,
and B, C lie in a different cycle, then A,C also lie in some cycle.

Lemma 2.29. Let Σ be a set of atomic FDs, and Y → B,X → A ∈ Σ be different. If
Y B ⊆ XA, then A and B participate in a cycle in RΣ.

Proof. Assume B /∈ X and thus B = A. Then Y ⊆ X, and since Y → B and X → A are
different, Y (X. But this is not possible since Y → B and X → A are both atomic.

Assume now A /∈ Y , and thus Y ⊆ X \ B. This would imply (X \ B) → A ∈ Σ∗,
which is a contradiction since X → A is atomic.

We therefore have B ∈ X and A ∈ Y , and thus B
p→ A and A

p→ B, which is a cycle
in RΣ.

In Lemma 2.29 we just show that A and B partially determine each other w.r.t. Σ,
and it depends on the choice of cover whether A partially determines B or not, even if we
only consider atomic covers.

Example 2.14. Consider the set of FDs Σ = {A → B, B → C}. Then A does not partially
determine C w.r.t. Σ, but it does w.r.t. Σ∗a = Σ ∪ {A → C}.

However, the transitive closure of the “partially determines” relation
p→ is independent

of the choice of atomic cover, as we show next.

Theorem 2.30. Let Σ be a set of atomic FDs, and let RΣ and RΣ∗a be the “partially
determines” relations w.r.t. Σ and Σ∗a. Then the transitive closures R+

Σ and R+
Σ∗a of RΣ

and RΣ∗a are identical.

32

Proof. By Theorem 2.5 every atomic FD in Σ∗a can be derived from Σ using the resolution
rule (2.1):

X → A AY → B

XY → B

Let G be the set of all FDs derivable this way. Since Σ ⊆ Σ∗a ⊆ G and thus

R+
Σ ⊆ R+

Σ∗a ⊆ R+
G

it suffices to show that R+
G is included in R+

Σ. For this we only need to show that the
derived FD XY → B does not add to R+

G. The only partial determinations that are

added by XY → B though are of the form C
p→ B with C ∈ XY . If C ∈ X then

C
p→ A,A

p→ B ∈ RG and thus C
p→ B was already contained in R+

G. If C ∈ Y then

C
p→ B was already contained in RG.

Note that, since all covers of Σ have the same atomic closure, Theorem 2.30 shows that
all atomic covers of Σ generate the same “partially determines” relation after taking the
transitive closure. This does not hold for non-atomic covers Σ′, which can add arbitrary
attributes to the LHSs of FDs and thus generate arbitrary extra arcs in RΣ′ .

Most importantly, Theorem 2.30 assures us that, instead of testing whether an at-
tribute participates in any cycle in RΣ∗a , we only need to test whether it participates in
a cycle in RΣ. This is because taking the transitive closure does not affect whether an
attribute participates in a cycle.

Definition 2.31. In the following we call attributes that participate in some cycle in RΣ

cyclic. We call a FD cyclic if at least one of its LHS attributes participates in a cycle
with one of its RHS attributes. An attribute or FD that is not cyclic is called acyclic.

We use the atomic closure for two purposes. The first use is to test whether a FD is
critical. We have seen that we only need cyclic FDs for this task, since acyclic atomic FDs
are never contained in other atomic FDs. The second use is to replace critical FDs. To
avoid computing acyclic FDs, we need to show that we can replace critical FDs without
them.

Definition 2.32. The cyclic closure Σ∗c of a set Σ of FDs is defined as

Σ∗c := {X → A ∈ Σ∗a | X → A is cyclic}.
Note that taking the cyclic closure is not a closure operation in the mathematical

sense. We chose the name since it contains the cyclic FDs in the atomic closure, which
in turn is not actually a closure either, but rather contains the atomic elements in the
closure.

Lemma 2.33. Let X → A ∈ Σ∗a be critical and implied by a minimal set S ⊂ Σ∗a. Then
every FD Y → B ∈ S with X∗ = Y ∗ is cyclic.

Proof. Since S is minimal, B is used in deriving X → A, and thus B precedes A in
R+

Σ. By Lemma 2.29 every critical FD is cyclic, in particular X → A, so there exists an
attribute C ∈ X which is preceded by A, and thus by B. Either C ∈ Y , or, as X → Y
is LHS-minimal, C is used to derive some attribute C ′ ∈ Y and thus precedes it. In the
latter case B precedes C ′. Since Y is atomic, C or C ′ precedes B as well, so B participates
in a cycle with C or C ′, which makes Y → B cyclic.

33

The above lemma does not allow us to replace critical FDs, which are implied by an
uncritical subset of Σ∗a, with uncritical FDs in Σ∗c. This is indeed not always possible:

Example 2.15. Consider the set of atomic FDs

Σ =

ABC → D,D → C,
ABC → F,EF → D,

AB → G,G → B,G → E

with the atomic closure

Σ∗a = Σ ∪

ABF → C, ABF → D, ABD → F,
AGC → D, AGC → F, AGD → F,

AB → E, EF → C, GF → C, GF → D

Note that Σ does not possess an uncritical cover: This is because the critical FD AB → G
cannot be replaced. While this means that we cannot get a faithful BCNF decomposition,
we could still try reduces the number of schemas which violate BCNF by replacing the
FD ABC → D, which is also critical.

It is easy to see that ABC → D is implied by the uncritical FDs

S = {ABC → F, AB → E, EF → D} ⊆ Σ∗a

Indeed all the FDs in S are needed, i.e., every uncritical set S ′ ⊆ Σ∗a that implies
ABC → D is a superset of S. However, the FD AB → E is not contained in

Σ∗c = Σ∗a \ {G → E, AB → E}
which we can find by computing the strongly connected components of RΣ:

SCC(RΣ) = {A,BG, CDF,E}
This means that ABC → D is not implied by any uncritical subset of Σ ∪Σ∗c. However,
ABC → D is implied by, and can be replaced with

{ABC → F,AB → G,G → E, EF → D} ⊂ Σ ∪ Σ∗c

in which only AB → G is critical. Since we need to keep AB → G anyway, this replace-
ment is just as good as a replacement with uncritical FDs.

We generalize this idea next.

Definition 2.34. For a set G ⊆ Σ∗a of FDs we denote by

crit(G) := {X → A ∈ G | X → A is critical}
the set of all critical FDs in G. Similarly

uncrit(G) := G \ crit(G)

Note again that critical FDs are always cyclic by Lemma 2.29.

Lemma 2.35. Let Σ be a minimal set of FDs such that Σ ² X → Y . Then for all
S → T ∈ Σ we have Σ ² X → S.

34

Proof. We have Σ ² X → Y iff Y ⊆ X∗, and X∗ can be constructed using only FDs
S → T ∈ Σ with S ⊆ X∗. Since Σ is minimal, all FDs in Σ must be used in the
construction. Clearly S ⊆ X∗ is equivalent to Σ ² X → S.

Theorem 2.36. Let Σ be a set of atomic FDs and G ⊆ Σ∗a be a cover for Σ. Then there
exists a cover H ⊆ Σ ∪ Σ∗c of Σ with crit(G) = crit(H).

Proof. Choose H maximal as

H := uncrit(Σ ∪ Σ∗c) ∪ crit(G)

By Lemma 2.29 all critical FDs are cyclic, and thus H ⊆ Σ∪Σ∗c. The equality crit(G) =
crit(H) holds by definition, so we only need to show that H is a cover for Σ.

Clearly Σ ² H and H ² uncrit(Σ), so let X → A be a minimal (w.r.t. LHS-
implication) critical FD in Σ which is not implied by H. Since G is a cover of Σ, there
exist a minimal subset S ⊆ G with S ² X → A. We show that H implies S.

By Lemma 2.33 every FD Y → B ∈ S is either cyclic or, since X → Y ∈ Σ∗ by
Lemma 2.35, smaller than X → A w.r.t. LHS-implication. In the former case, Y → B
is contained in H and thus implied. In the latter case it is implied by a minimal subset
T ⊆ Σ which, again by Lemma 2.35, contains only FDs smaller that X → A. Since we
chose X → A ∈ Σ minimal, all FDs in T are implied by H.

If we take the set of critical FDs as a measure of how “good” a cover is for BCNF
decomposition, the above theorem assures us that we can always find an equally good
cover by restricting our search to Σ ∪ Σ∗c rather than Σ∗a. In particular we get the
following:

Corollary 2.37. Σ has an uncritical cover (and thus a faithful BCNF decomposition) iff
it has an uncritical cover in Σ ∪ Σ∗c.

The question remaining is whether we can compute the set Σ∗c efficiently without
computing all of Σ∗a. This is possible.

Lemma 2.38. Let X → A,AY → B ∈ Σ∗a. If AY → B is acyclic then so is the FD
XY → B ∈ Σ∗, derived by the resolution rule (2.1):

X → A AY → B

XY → B

Proof. Let XY → B be cyclic. Then B
p→ C lies in R+

Σ for some C ∈ XY . If C ∈ Y

then AY → B is clearly cyclic. If C ∈ X then C
p→ A and A

p→ B, and again AY → B
is cyclic.

Since LHS-minimization does not make an acyclic FD cyclic, all FDs derived from an
acyclic FD by linear resolution (with LHS-minimization) will be acyclic as well. Thus we
need not use any acyclic FD as base FD and can safely discard it instead (note though
that acyclic FDs in Σ are still needed as substituting FDs).

Testing whether a FD is cyclic can be done efficiently by pre-computing the maximal
strongly connected components (MSCs) of RΣ, which only requires linear time [41]. The
time complexity for computing Σ∗c with an adapted “linear resolution” algorithm is thus

O
(
fc · k2n2

)

35

where fc is the number of FDs in Σ∗c. Similarly, the time complexity for the “least critical
cover synthesis” algorithm using Σ∗c instead of Σ∗a becomes

O
(
fc · k2n2 + f 2

c · k
)

In conclusion we observe that restricting our computations to cyclic FDs can lead to great
speed improvements in cases where Σ∗c is much smaller than Σ∗a, while generating only
a small computational overhead (for testing cyclicity) when all or most FDs in Σ∗a are
cyclic.

2.2.4 Related Work

As mentioned before, the algorithm for finding faithful BCNF decompositions in section
2.2.1 is an improvement of an algorithm by Osborn [38].

Kandzia and Mangelmann present an algorithm which always finds faithful BCNF
decompositions in [23]. Their approach extends that of Osborn [38] by introducing extra
attributes and FDs to generate a faithful BCNF decomposition in cases where none exists
normally. While the introduction of extra attributes for the sake of obtaining a BCNF
decomposition may not always be desirable (indeed it is counter productive to our work
in chapter 4), it is fully compatible with our improvements of Osborn’s approach.

Gottlob, Pichler and Wei describe an algorithm for testing whether a subschema is
in BCNF (or 3NF) in [20], and show that its complexity is linear for sets Σ of bounded
treewidth.

Our work on partial determination cycles extends the work of Majster-Cederbaum
[34]. Partial determination cycles were also used by Saiedian and Spencer in [39], though
for different purposes.

2.3 Complex-Valued Databases

We extend our approach for normalization to complex-valued database schemas which are
constructed using record, list, set and multiset constructors.

2.3.1 Introduction

A number of complex-valued data models have been suggested. We will follow the ap-
proach of Link in [29], since it focuses on the main data structures and avoids unnecessary
complications which do not enrich the model.

Instead of dealing with relation schemas, nested attributes are introduced as extensions
of flat attributes (which are the same as attributes in the relational model) using a number
of type constructors.

Definition 2.39. [29, Def. 2.12] A universe is a finite set U together with domains (i.e.,
sets of values) dom(A) for all A ∈ U . The elements of U are called flat attributes.

Definition 2.40. [29, Def. 2.13] Let U be a universe and L a set of labels. The set
NA(U ,L) of nested attributes over U and L is the smallest set satisfying the following
conditions:

1. λ ∈ NA(U ,L),

36

2. U ⊆ NA(U ,L),

3. for L ∈ L and N1, . . . , Nk ∈ NA(U ,L) with k ≥ 1 we have L(N1, . . . , Nk) ∈
NA(U ,L),

4. for L ∈ L and N ∈ NA(U ,L) we have L[N] ∈ NA(U ,L),

5. for L ∈ L and N ∈ NA(U ,L) we have L{N} ∈ NA(U ,L),

6. for L ∈ L and N ∈ NA(U ,L) we have L〈N〉 ∈ NA(U ,L).

We call λ null attribute, L(N1, . . . , Nk) record-valued attribute, L[N] list-valued attribute,
L{N} set-valued attribute, and L〈N〉 multiset-valued attribute.

The domains of nested attributes are defined as one would expect.

Definition 2.41. [29, Def. 2.14] For a nested attribute N ∈ NA we define the domain
dom(N) as follows:

1. dom(λ) = {ok},
2. dom(A) as above for all A ∈ U ,

3. dom(L(N1, . . . , Nk)) = {(v1, . . . , vk) | vi ∈ dom(Ni) for i = 1, . . . , k}, i.e., the set of
all k-tuples (v1, . . . , vk) with vi ∈ dom(Ni) for all i = 1, . . . , k,

4. dom(L[N]) = {[v1, . . . , vn] | vi ∈ dom(N) for i = 1, . . . , n} ∪ {[]}, i.e., dom(L[N]) is
the set of all finite lists with elements in dom(N),

5. dom(L{N}) = {{v1, . . . , vn} | vi ∈ dom(N) for i = 1, . . . , n}∪{∅}, i.e., dom(L{N})
is the set of all finite subsets of dom(N),

6. dom(L〈N〉) = {〈v1, . . . , vn〉 | vi ∈ dom(N) for i = 1, . . . , n} ∪ {〈 〉}, i.e., dom(L〈N〉)
is the set of all finite multisets with elements in dom(N).

Note that a relation schema R = {A1, . . . , An} is captured by the record-valued at-
tribute R(A1, . . . , An) with label R, i.e., by a single application of the record constructor.
Instead of relation schemata R we will now consider a nested attribute N . An R-relation
r is then replaced by some set r ⊆ dom(N).

In the relational model we had to deal with subschemas. In the complex valued
approach we obtain subattributes instead.

Definition 2.42. [29, Def. 2.15] The subattribute relation ≤ on the set of nested attributes
NA over U and L is defined by the following rules, and the following rules only:

1. N ≤ N for all nested attributes N ∈ NA,

2. λ ≤ A for all flat attributes A ∈ U ,

3. λ ≤ N for all set-valued, multiset-valued and list-valued attributes N ∈ NA,

4. L(N1, . . . , Nk) ≤ L(M1, . . . ,Mk) whenever Ni ≤ Mi for all i = 1, . . . , k,

5. L[N] ≤ L[M] whenever N ≤ M ,

37

6. L{N} ≤ L{M} whenever N ≤ M ,

7. L〈N〉 ≤ L〈M〉 whenever N ≤ M .

For N, M ∈ NA we say that M is a subattribute of N if and only if M ≤ N holds. We
write M 6≤ N if and only if M is not a subattribute of N .

Given the relation schema R = {A,B,C} the attribute set {A,C} can be viewed as
the subattribute R(A, λ, C) of the record-valued attribute R(A,B,C).

In the following we will abbreviate subattributes by dropping labels, e.g. the nested
attribute R(A, ST (B, C)) will be abbreviated as (A, (B, C)).

Definition 2.43. [29, Def. 2.17] Let N, M ∈ NA with M ≤ N . The projection function
πN

M : dom(N) → dom(M) is defined as follows:

1. if N = M , then πN
M = iddom(N) is the identity on dom(N),

2. if M = λ, then πN
λ : dom(N) → {ok} is the constant function that maps every

v ∈ dom(N) to ok,

3. if N = L(N1, . . . , Nk) and M = L(M1, . . . ,Mk), then πN
M = πN1

M1
× · · · × πNk

Mk
which

maps every tuple (v1, . . . , vk) ∈ dom(N) to (πN1
M1

(v1), . . . , π
Nk
Mk

(vk)) ∈ dom(M),

4. if N = L[N ′] and M = L[M ′], then πN
M : dom(N) → dom(M) maps every list

[v1, . . . , vn] ∈ dom(N) to the list [πN ′
M ′(v1), . . . , π

N ′
M ′(vn)] ∈ dom(M),

5. if N = L{N ′} and M = L{M ′}, then πN
M : dom(N) → dom(M) maps every set

S ∈ dom(N) to the set {πN ′
M ′(s) : s ∈ S} ∈ dom(M), and

6. if N = L〈N ′〉 and M = L〈M ′〉, then πN
M : dom(N) → dom(M) maps every multiset

S ∈ dom(N) to the multiset 〈πN ′
M ′(s) : s ∈ S〉 ∈ dom(M).

The binary operators join t and meet u are the equivalent to union ∪ and intersection
∩ in the relational case. For X, Y ≤ N we get:

• X t Y is the minimal subattribute of N with X, Y ≤ X t Y

• X u Y is the maximal subattribute of N with X,Y ≥ X u Y

Functional Dependencies can now be defined as follows:

Definition 2.44. [29, Def. 5.1] Let N ∈ NA be a nested attribute. A functional depen-
dency on N is an expression of the form X → Y where X ,Y ⊆ Sub(N) are non-empty. A
set r ⊆ dom(N) satisfies the functional dependency X → Y on N , denoted by |=r X → Y ,
if and only if πN

Y (t1) = πN
Y (t2) holds for all Y ∈ Y whenever πN

X (t1) = πN
X (t2) holds for all

X ∈ X and any t1, t2 ∈ r.

Note that we cannot always replace a set of subattributes by their join.

Example 2.16. [29] Suppose we store sets of tennis matches using the nested attribute

Tennis{Match(Winner,Loser)}.
Consider the following instance r over Tennis{Match(Winner,Loser)}:

38

{ {(Becker, Agassi), (Stich, McEnroe)},
{(Becker, McEnroe), (Stich, Agassi)} }.

The second element of this set results from the first by simply switching opponents. We
can see that |=r Tennis{Match(Winner)} → Tennis{Match(Loser)} holds. In fact, the
set of winners {Becker, Stich} is the same for both elements and so is the set of losers
{Agassi, McEnroe}.

However, 6|=r Tennis{Match(Winner)} → Tennis{Match(Winner, Loser)} since the
matches stored in both elements are different from one another. The instance r is therefore
a prime example for the failure of the extension rule

X → Y

X → X t Y

in the presence of sets. The same is true for multisets as a set is just a multiset in which
every element occurs exactly once.

Sufficient and necessary conditions when projections on subattributes X and Y do
determine the projection on X t Y have been identified.

Definition 2.45. [29, Def. 5.2] Let N ∈ NA. The subattributes X,Y ∈ Sub(N) are
reconcilable if and only if one of the following conditions is satisfied

• Y ≤ X or X ≤ Y ,

• N = L(N1, . . . , Nk), X = L(X1, . . . , Xk), Y = L(Y1, . . . , Yk) where Xi and Yi are
reconcilable for all i = 1, . . . , k,

• N = L[N ′], X = L[X ′], Y = L[Y ′] where X ′ and Y ′ are reconcilable.

Lemmas 5.3, 5.14 and 5.16 in [29] show the following:

Lemma 2.46. Let N ∈ NA, X,Y ∈ Sub(N). Then the following are equivalent:

(i) X and Y are reconcilable

(ii) for all t1, t2 ∈ dom(N) with πN
X (t1) = πN

X (t2) and πN
Y (t1) = πN

Y (t2) we have πN
XtY (t1) =

πN
XtY (t2)

In order to simplify the implication problem for FDs, attributes are split into maximal
reconcilable subattributes.

Definition 2.47. [29, Def. 5.27] Let N ∈ NA. A nested attribute Ni ∈ NA is a unit of
N if and only if

1. Ni ≤ N ,

2. ∀X, Y ≤ Ni, if X and Y are reconcilable, then X ≤ Y or Y ≤ X,

3. Ni is ≤-maximal with properties 1. and 2.

The set of all units of N is denoted by U(N).

39

When representing FDs, we will want to replace non-unitary attributes in FDs with
their units. In [29] a characterization for the units of a nested attribute is given, and it is
shown that this replacement does not change the semantics of the FDs:

Lemma 2.48. [29, Lemma 5.28] Let N ∈ NA. Then

U(N) =
k⋃

i=1

{L(λN1 , . . . ,M, . . . , λNk
) : M ∈ U(Ni) and Ni 6= λNi

}

if N = L(N1, . . . , Nk) and N 6= λN ,

U(N) = {L[M ′] : M ′ ∈ U(M)}
if N = L[M] holds and U(N) = {N} in any other case.

Lemma 2.49. [29, Lemma 5.29] Let N ∈ NA. Then N =
⊔{M | M ∈ U(N)} and for

N1, N2 ∈ U(N) with N1 6= N2 and U ≤ N1, V ≤ N2 follows that U and V are reconcilable.

For a more thorough discussion of the complex-valued model introduced here see [29].

2.3.2 Representation Basis

Unlike in [29] we will be interested in all subattributes with properties 1. and 2. of
Definition 2.47, not just maximal ones.

Definition 2.50. We call a nested attribute N unitary if it is a unit of itself. We write
N↓ for the set of all unitary subattributes of N .

Unitary attributes can also be characterized as follows:

Corollary 2.51. An attribute N is unitary iff the FD N↓ \N → N is non-trivial.

Proof. If N is unitary then by definition its subattributes cannot be reconciled to N ,
which makes N↓ \N → N non-trivial. If N is not unitary, then U(N) ⊆ N↓ \N , and by
Lemma 2.49 N is the join of its reconcilable units, making N↓ \N → N trivial.

We will use unitary attributes for representing FDs. However, not all of them will
actually be needed for this task.

Definition 2.52. We define the representation basis (RB) rb(N) of a nested attribute N
as the set of its units, and the RB of a FD X → Y is the union of the RBs of all attributes
appearing in X or Y , while rb(Σ) of a set Σ of FDs is the union of the RBs of all FDs in
Σ.

Example 2.17. Let Σ = {{(A, {(B, C)})} → {(D)}, {({(B)}, D)} → {(A)}} be a set of
FDs over the nested attribute (A, {(B, C)}, D). Then

rb((A, {(B,C)})) = {(A), ({(B,C)})}
rb({(A, {(B,C)})} → {D}) = {(A), ({(B,C)}), (D)}

rb(Σ) = {(A), ({(B,C)}), (D), ({(B)})}

40

Clearly an attribute can be represented equivalently by its representation basis. The
benefit of this representation is that we can represent FDs derived from Σ using only
the representation basis of Σ, rather than the possibly exponential set of all unitary
subattributes. While this does not hold for all FDs implied by Σ, it does for all FDs that
we will be interested in (i.e., for all FDs occurring during our derivation process).

Definition 2.53. We call an attribute A RB-representable if rb(A) ⊆ RB. Similar for
FDs or sets of attributes/FDs.

We will want to talk about the representation basis of the left- and right hand sides
of FDs in Σ separately.

Definition 2.54. Let Σ be a set of FDs. We define lhs(Σ) :=
⋃

X→Y ∈Σ

X and similarly

rhs(Σ) :=
⋃

X→Y ∈Σ

Y , and say that Σ is RBL → RBR-representable if lhs(Σ) is RBL-

representable and rhs(Σ) is RBR-representable.

Definition 2.55. We call a FD X → Y in standard form if X and Y contain only unitary
elements. We call a X → Y singular if it is in standard form and Y contains only a single
element.

Clearly every FD can be replaced by an equivalent FD in standard form, or an equiv-
alent set of singular FDs. For ease of reading, we will not always distinguish between
an attribute and the singleton set containing that attribute, and leave out brackets and
commas where this does not cause ambiguities. Thus we write the set Σ from example
2.17 shorter as Σ = {A{BC} → D, {B}D → A}.

Definition 2.56. Let X be a set of unitary attributes. We define the basis dXe of X as
the maximal elements in X. Conversely, we define the completion A↓RB of an attribute A
w.r.t. a set RB of unitary attributes as the set of all subattributes of A in RB, and the
completion X↓RB of X as the union of the completions of the attributes in X.

Definition 2.57. A non-trivial FD X → Y ∈ Σ∗ is atomic w.r.t. a set Σ of FDs if

(i) X → Y is singular

(ii) X is minimal with X → Y ∈ Σ∗, i.e. there is no Z → Y ∈ Σ∗ with Z (X or
Z↓ (X↓

We call X → Y maximal atomic if the following holds as well:

(iii) A ∈ Y is maximal among unitary attributes with X → A ∈ Σ∗

The definition of minimality for X in (ii) says that we cannot weaken X, neither by
removing attributes from it nor by replacing an attribute by one or more of its subat-
tributes. Thus for the set Σ = {A{BC} → D, {B}D → A} from example 2.17, the FD
{BC}D → A would not be atomic.

41

2.3.3 Linear Resolution

We can now derive atomic FDs from Σ using linear resolution by modifying the resolution
rule to cope with the requirements of nested attributes:

X → A Y → B

dX(Y \ A↓)e → B
(NA-Resolution)

Similar to resolution in the relational model, we only need to apply the NA-Resolution
rule when Y ∩ A↓ 6= ∅ and B /∈ X↓.

Theorem 2.58. Let Σ be singular. Then all maximal atomic FDs in Σ∗a can be derived
from Σ using linear NA-Resolution.

Proof. Let X → A be maximal atomic. We consider again the closure computation for X.
Since A is maximal and unitary, the closure computation must use a FD Y → A ∈ Σ. The
remaining argument proceeds as in the proof for the relational case (Theorem 2.5).

Corollary 2.59. The following axiom system is sound and complete for singular FDs:

X → A Y → B

dX(Y \ A↓)e → B
,

XB → A
A ≤ B

Proof. As for the relational case (Corollary 2.9), but based on Theorem 2.58.

We denote the set of all maximal atomic FDs in Σ∗a as Σ∗max. Clearly Σ∗max forms a
cover of Σ.

Corollary 2.60. Σ∗max is rb(lhs(Σ)) → rb(rhs(Σ))-representable.

Proof. If Σ contains non-singular FDs we can replace them by equivalent singular ones
without changing the representation basis, so we may assume that Σ is singular. Consider
the NA-resolution rule: if X → A and Y → B are rb(lhs(Σ)) → rb(rhs(Σ))-representable,
so is dX(Y \ completionB)e → A. Thus all FDs derivable from Σ using NA-resolution
are rb(lhs(Σ)) → rb(rhs(Σ))-representable, in particular all maximal atomic ones.

As before, we wish to speed up the computation by keeping only maximal atomic FDs
for later resolution steps. Condition (i) automatically holds for any derived FD X ′ → B.

If condition (iii) is violated, i.e., if there exists a unitary B′ > B with X ′ → B′ ∈ Σ∗,
we can discard X ′ → B. This is because for any FD X ′′ → B derivable from X ′ → B we
can derive X ′′ → B′ from X ′ → B′, so X ′′ → B is not maximal atomic.

We test condition (ii) by removing attributes from X and checking if the new reduced
LHS still determines B. However, unlike in the relational model where the removal of a
single attribute was the smallest reduction possible, we now need to replace the removed
attribute A by all the unitary true sub-attributes of A. The reduction of X now takes the
form

Xreduced := (X ∪ A↓) \ A

which requires us to add the completion A↓ of A to X. In this we can restrict ourselves
to the completion w.r.t. rb(lhs(Σ)), since all maximal atomic FDs are rb(lhs(Σ)) →
rb(rhs(Σ))-representable.

If the reduced LHS still determines B, we compute its basis and replace X by it, then
iterate the process. This gives us the following algorithm:

42

Algorithm “linear NA-resolution”

INPUT: set of FDs Σ
OUTPUT: maximal atomic closure Σ∗max

compute a maximal atomic cover Σ′ of Σ
Σ∗max := Σ′

for all Y → B ∈ Σ∗max do
for all X → A ∈ Σ′ with A ∈ Y, B /∈ X do

// derive
⌈
X(Y \ A↓)

⌉ → B by rule (NA-Resolution)
X ′ :=

⌈
X(Y \ A↓)

⌉
if X ′ → B is maximal then

Σ∗max := Σ∗max ∪ {lhs-minimize(X ′ → B, Σ)}
end

end

function lhs-minimize(X → B, Σ)
U := X
for all A ∈ U do

U ′ :=
⌈
(U ∪ A↓rb(lhs(Σ))) \ A

⌉
if U ′ → B ∈ Σ∗ then

U := U ′

end
return U → B

We have just described an algorithm for constructing the set Σ∗max of all maximal
atomic FDs in Σ∗a. However, as the following example shows, we cannot always find an
uncritical cover of maximal atomic FDs whenever an uncritical cover exists.

Example 2.18. Consider the nested attribute A{BC} with the set of FDs

Σ = {A → {BC}, {B} → {BC}}

Σ already contains all maximal atomic FDs in Σ∗a, but A → {BC} is critical. Σ does
however have the uncritical atomic cover:

G = {A → {B}, {B} → {BC}}

This means that we cannot restrict ourselves to maximal atomic FDs only when trying
to find an uncritical cover. It is simple to derive Σ∗a from Σ∗max: for every X → A ∈ Σ∗max

and every unitary A′ < A check whether X → A′ is atomic (i.e., whether X is minimal)
and if so add it to Σ∗a. The problem with this approach however, is that the number of
unitary subattributes A′ of A can be exponential in the size of A:

Example 2.19. Consider the nested attribute A{B1 . . . Bn} with

Σ = Σ∗max = {A → {B1 . . . Bn}}

Then {B1 . . . Bn} has 2n unitary subattributes, and Σ∗a contains 2n atomic FDs.

43

Again we solve this problem by restricting ourselves to subattributes which appear in
the representation basis of Σ. This is sufficient, since we will show later that whenever Σ
has an uncritical cover, it has an uncritical canonical cover representable in rb(Σ).

Lemma 2.61. Let Σ be a set of FDs and A a unitary attribute with A /∈ rb(lhs(Σ)).
Then for every set X of unitary attributes we have

XA∗ =
(
XA↓ \ A

)∗ ∪ A

Proof. Let Y → Z ∈ Σ with
Y ≤ (

XA↓ \ A
)∗ ∪ A

Since A does not appear in the LHS of any FD in Σ, we have

Y ≤ (
XA↓ \ A

)∗

As
(
XA↓ \ A

)∗
is closed under Σ we also get

Z ≤ (
XA↓ \ A

)∗

Since this holds for all Y → Z ∈ Σ, the set
(
XA↓ \ A

)∗∪A is closed under Σ, which gives
us

XA∗ =
((

XA↓ \ A
)∗ ∪ A

)∗
=

(
XA↓ \ A

)∗ ∪ A

Lemma 2.62. Let Σ be a set of FDs and X → A ∈ Σ∗a be atomic. Then X is rb(lhs(Σ))-
representable.

Proof. Let B ∈ X be any unitary attribute in X. If B does not lie in rb(lhs(Σ)) then

X∗ =
(
(XB↓) \B

)∗ ∪B

by Lemma 2.61. Since X → A is atomic and thus non-trivial, A � B, we have

A ∈ (
(XB↓) \B

)∗

which contradicts the minimality of X. Thus all B ∈ X are rb(lhs(Σ))-representable, and
therefore X.

It follows in particular that for every canonical cover G of Σ the LHS of G is rb(lhs(Σ))-
representable. One might hope that the RHS of G is rb(rhs(Σ))-representable, or at least
rb(Σ)-representable. This, however does not hold for all canonical covers.

Example 2.20. Consider the set of FDs

Σ = {A → {BCD}, {B} → {BCD}}

and its canonical cover

G = {A → {BC}, {B} → {BCD}}

The unitary attribute {BC} ∈ rb(rhs(G)) does not lie in rb(Σ).

44

The problem in the example above comes from the fact that the RHS of A → {BC}
was larger than it had to be. We therefore will restrict ourselves to sets of FDs with
minimal RHSs.

Definition 2.63. We call a set of FDs Σ RHS-reduced if for every FD X → A ∈ Σ the
set

Σ\{X → A} ∪ {X → A↓ \ A}

is not a cover of Σ.

Theorem 2.64. Let Σ be a set of FDs and G a RHS-reduced canonical cover of Σ. Then
G is rb(lhs(Σ)) → rb(Σ)-representable.

Proof. By Lemma 2.62 lhs(G) is rb(lhs(Σ))-representable, thus we only need to show that
rhs(G) is rb(Σ)-representable. Assume the contrary and let X → A ∈ G with A /∈ rb(Σ).
Let further H := G \ {X → A} and consider the closures X∗G of X w.r.t. G and XA∗H

of XA w.r.t H. Clearly

X∗G = XA∗G = XA∗H

But since A does not lie in rb(lhs(H)) ⊆ rb(Σ) we have by Lemma 2.61:

XA∗H =
(
XA↓ \ A

)∗H ∪ A

Again using the fact that A /∈ rb(Σ) we find that X → A is not maximal atomic by
Corollary 2.60, and thus A < A′ for some unitary A′ with X → A′ ∈ Σ∗. From

A′ ∈ X∗G =
(
XA↓ \ A

)∗H ∪ A

we conclude that A′ ∈ (
XA↓ \ A

)∗H
and thus

X∗G =
(
XA↓ \ A

)∗H

But this means that H ∪ {X → A↓ \ A} is a cover of G, which contradicts G being
RHS-reduced.

Note that in particular, all RHS-reduced canonical covers of Σ have the same repre-
sentation basis, as do their LHSs. This is not true for their RHSs though, as the following
example shows.

Example 2.21. The sets of FDs on the attribute A{BC}

Σ = {A → {B}, {B} → {BC}, {C} → {BC}}
G = {A → {C}, {B} → {BC}, {C} → {BC}}

are RHS-reduced canonical covers of each other, but the RBs of their RHSs differ.

45

2.3.4 Faithful BCNF-Decomposition

The definition for Boyce-Codd Normal Form is the same for nested attributes as in the
relational model:

Definition 2.65. A subattribute S ≤ N (or extended subattribute, see Definition 2.66) is
in Boyce-Codd Normal Form w.r.t. a set Σ of FDs on S if every non-trivial FD X → Y ∈ Σ
is a key dependency, i.e., Σ ² X → S.

Having computed the set of all rb(Σ)-representable atomic FDs of Σ, we now use it
to decompose the nested attribute N into normal form while preserving dependencies.
When decomposing a nested attribute, we must ask ourselves what to decompose into. A
first candidate might be subattributes, but as the following example shows, this can be
an undesirable restriction.

Example 2.22. Let N = {AB}CD be a nested attribute with FDs Σ = {{A}{B} → C}.
Then N has no faithful, lossless BCNF decomposition into subattributes: the smallest
subattribute on which {A}{B} → C is defined is {AB}C, which is not in BCNF. It is
however possible to decompose N into

{A}{B}C and {AB}D
which is lossless, faithful and in BCNF.

It appears that what we need are not subattributes, but rather tuples of subattributes
such as ({A}, {B}, C). Since the order of the attributes in a tuple does not matter for
design purposes, we may as well talk about sets of subattributes instead.

Definition 2.66. We call a set S of unitary subattributes of N an extended subattribute
of N if no attribute in S is a subattribute of any other attribute in S. We say that an
extended subattribute S ′ of N is an extended subattribute of S if every attribute in S ′ is
a subattribute of some attribute in S. Join and meet between extended subattributes are
defined according to this extended subattribute order.

The requirement that subattributes in S be unitary identifies intuitively equivalent
sets such as {{A}, {B}, C}, {{A}C, {B}}, {{A}, {B}C} and {{A}C, {B}C}. Prohibiting
subattributes of another attribute in a tuple prevents obvious redundancy.

From now on, when talking about decomposition of nested attributes, we will mean
decomposition into extended subattributes.

Lemma 2.67. Every faithful decomposition of R containing an extended subattribute
which forms a key of R is lossless.

Proof. As in the relational case [10].

In the relational case we can use this lemma to make a decomposition lossless “for
free”, since every minimal key is automatically in BCNF. This does not hold when we
move to nested attributes however.

Example 2.23. Let N = {AB}CD with FDs

Σ = {{A}C → {B}, {B}C → D, {B}D → C}
Then N has the minimal keys {AB}C and {AB}D. The first key violates BCNF, the
second does not.

46

Definition 2.68. A set S of attributes is called critical (w.r.t. Σ) if dSe is not in BCNF
(w.r.t. Σ∗[dSe]). A FD X → Y ∈ Σ∗ is called critical if XY is critical. A cover G of Σ is
called critical if it contains a critical FD. An attribute set, FD or cover that is not critical
is called uncritical.

In the relational case it has been shown (e.g. [27]) that every lossless decomposi-
tion contains a key. However, this result does not translate directly to complex-valued
databases. For the moment we shall just state the result, and postpone the proof and
discussion of it to the next subsection. The term LHS-restricted will be defined there as
well.

Lemma 2.69. Let N be a nested attribute with FDs Σ. If Σ is not LHS-restricted, then
every lossless decomposition of N contains an extended subattribute which is a key of N .

Theorem 2.70. Let Σ not be LHS-restricted. Then the following are equivalent:

(i) A schema (R, Σ) has a faithful, lossless decomposition into BCNF

(ii) Σ has an uncritical cover and an uncritical key

(iii) Σ has an uncritical RHS-reduced canonical cover and an uncritical minimal key

Proof. (ii) → (i) : If Σ has an uncritical cover G, then we can synthesize a faithful BCNF
decomposition D by creating a schema dXY e for every X → Y ∈ G, and if necessary add
an uncritical key to D to make the decomposition lossless (Lemma 2.67).

(i) → (ii) Now let D = {R1, . . . , Rn} be a faithful BCNF decomposition of (R, Σ),
and Σi be the FD set associated with Ri. Since D is faithful, the union G :=

⋃
Σi of

all FDs on the extended subattributes forms a cover of Σ. For each FD X → Y ∈ G
the extended subattribute dXY e is an extended subattribute of some Ri. Since Ri is
in BCNF, so are all of its extended subattributes (in particular dXY e), which means
X → Y is uncritical. This makes G an uncritical cover of Σ as required. By Lemma 2.69
D contains an uncritical key.

(ii) → (iii) We can construct an uncritical RHS-reduced canonical cover G′ of G,
which is then a cover of Σ as well, as follows: For each FD X → Y ∈ G and each Ai ∈ Y
there exists a minimal Ui ≤ X such that Ui → Ai ∈ Σ∗. Each such FD Ui → Ai is atomic,
and since UiAi ≤ XY , it is uncritical. Furthermore, G′

X→Y := {Ui → Ai | Ai ∈ Y }
implies X → Y , therefore G′ :=

⋃
X→Y ∈G

G′
X→Y is a cover of G, and thus an uncritical

atomic cover of Σ. By removing redundant FDs from G′ we obtain an uncritical canonical
cover. Reducing the RHS of the FDs remaining in G′ keeps them uncritical and preserves
the cover property. Finally, every uncritical key can be reduced to a minimal key which
is still uncritical.

Thus, in order to find a faithful lossless BCNF decomposition, we now need to do two
things: find an uncritical cover, and an uncritical key. To find an uncritical key, we can
use linear NA-resolution to compute all minimal keys of N .

Both of these computations are necessary. From the relational case it is already clear
that the existence of an uncritical key does not imply the existence of an uncritical cover.
The following example shows that the existence of an uncritical cover does not imply
that every or any minimal key is uncritical, and that we can have critical and uncritical
canonical covers as well as critical and uncritical minimal keys.

47

Example 2.24. Let N = {AB}CDE with FDs

Σ = {{A}C → {B}, {B}C → D, {B}D → C, {B}C → E,E → C}
As in example 2.23, N has the minimal keys {AB}C and {AB}D, where the first key
violates BCNF, the second does not. While the FD {B}C → E is critical, it can be
replaced by the uncritical FD {B}D → E, which give us the uncritical cover

G = {{A}C → {B}, {B}C → D, {B}D → C, {B}D → E, E → C}
If we modify Σ to Σ′ = Σ ∪ {{A}D → {B}} we still find an uncritical cover G′ =
G ∪ {{A}D → B}, but now both minimal keys violate BCNF.

2.3.5 Lossless Decomposition

We will prove Lemma 2.69 and demonstrate why the requirement of having Σ not LHS-
restricted is necessary. For that, we first look into the corresponding proof in the relational
case (adapting the correctness proof for the chase procedure [27]).

Lemma 2.71. Let R be a relational schema and Σ a set of FDs on R. Then every lossless
decomposition D of R contains a key of R.

Proof. Let D not contain a key of R. We show that D is not lossless by constructing a
sample relation r on R as follows. Let t be an arbitrary tuple on R. Then for every schema
Ri ∈ D add a tuple ti to r which is identical to t on R∗

i , and contains unique values for
attributes outside R∗

i . Then for every FD X → Y ∈ Σ, two tuples ti, tj are identical on
X iff X ⊆ R∗

i ∩R∗
j . Since R∗

i ∩R∗
j is closed under Σ, Y also lies in it, so X → Y holds on

r. Since D contains no key, the tuple t does not lie in r. It does however lie in

r[R1] .// r[Rn]

which makes D not lossless.

We first note that the proof requires a sufficient number of distinct attribute values
for the construction. In this, we implicitly assume that attribute domains are infinite.
This assumption is indeed necessary, since the lemma does not hold if we work with finite
domains. For the remainder of this subsection we will allow domains (of base attributes)
to be finite, although we still require them to contain at least two elements.

Example 2.25. Let R = ABCD with FDs Σ = {A → BC, BC → A} and decomposition
D = {ABC,BD, CD}. Let furthermore the domain of A contain only two values, say
dom(A) = {0, 1}. Then D contains no key of R, but is lossless.

Proof (of example 2.25). Assume D was not lossless, i.e., for some relation r on R there
exists a tuple t with

t ∈ (./ r[D]) \ r

Then for every Ri ∈ D there must be a tuple ti ∈ r with ti[Ri] = t[Ri]. We may assume
w.l.o.g. that t = (0, 0, 0, 0). This gives us the following subset of r:

r′ =

A B C D

0 0 0 d
a1 0 c 0
a2 b 0 0

48

for some values a1, a2, b, c, d with a1, a2 ∈ dom(A) = {0, 1}. If a1 = 0 or a2 = 0 then the
FD A → BC implies c = 0 or b = 0, respectively, and thus t ∈ r which contradicts the
assumption. If a1 = a2 = 1 then A → BC again implies b = 0 and c = 0, which gives us
the following subset of r:

r′ =
A B C D

0 0 0 d
1 0 0 0

But then the FD BC → A would be violated on r′ and thus on r.

Note that this example can easily be generalized to work for arbitrary finite domains.
For dom(A) = {1, . . . , k} chose

R = AB1 . . . BkC

Σ = {A → B1 . . . Bk, B1 . . . Bk → A}
D = {AB1 . . . Bk, R \ AB1, . . . , R \ ABk}

Obviously we need some restrictions on the domains for Lemma 2.71 to work. However,
requiring all domains of attributes occurring in R to be infinite is too strong. While finite
domains could perhaps be ignored in relational databases, they arise naturally in complex-
valued databases for subattributes such as {λ}.

In the example above, the attribute A occurred in the LHS of a FD in Σ. It turns out
that requiring that these attributes have infinite domains is sufficient.

Lemma 2.72. Let R be a relational schema and Σ a set of FDs on R. If all attributes
which occur in the LHS of a FD in Σ have infinite domains, then every lossless decompo-
sition D of R contains a key of R.

Proof. As for Lemma 2.71, except that for attributes not occurring in the LHS of a FD
in Σ we do not require the ti to have unique values, but only values different to t.

We now extend these results to complex-valued databases.

Definition 2.73. Let N be a nested attribute and S a unitary subattribute of N . We
call S restricted if dom(S) is finite. A FD X → Y is LHS-restricted if some element in X
is restricted, and a set Σ of FDs over N is LHS-restricted if any of its FDs are.

To prove Lemma 2.69, we need to be able to construct tuples ti which are identical to
some tuple t on an extended subattribute (corresponding to R∗

i in the relational case), but
unique (or at least different when domains are finite) for subattributes “outside” these
extended subattributes. For this we use and adapt some lemmas from [29].

Lemma 2.74. [29, Lemma 5.10] Let N = L{P} ∈ NA, and ∅ 6= X ⊆ Sub(N) an ideal
with respect to ≤. Then there are tN , t′N ∈ dom(N) with πN

W (tN) = πN
W (t′N) if and only if

W ∈ X .

Lemma 2.75. [29, Lemma 5.13] Let N = L〈P 〉 ∈ NA, and ∅ 6= X ⊆ Sub(N) an ideal
with respect to ≤. Then there are tN , t′N ∈ dom(N) with πN

W (tN) = πN
W (t′N) if and only if

W ∈ X .

49

Lemma 2.76. [29, Lemma 5.14] Let N ∈ NA, and ∅ 6= X ⊆ Sub(N) an ideal with
respect to ≤ with the property that for reconcilable X,Y ∈ X also X tY ∈ X holds. Then
there are tN , t′N ∈ dom(N) with πN

W (tN) = πN
W (t′N) if and only if W ∈ X .

Note that in the last lemma we could also consider only unitary subattributes of N ,
and thus no longer need to worry about reconcilable subattributes. What will take that
view when formulating our next lemma.

Lemma 2.77. Let N ∈ NA, and ∅ 6= Xi ⊆ N↓ for i = 1, . . . , k be ideals with respect to
≤. Then there are t, t1, . . . , tn ∈ dom(N) with the following properties (for all W ∈ N↓):

(i) πN
W (ti) = πN

W (t) if W ∈ Xi

(ii) πN
W (ti) 6= πN

W (t) if W /∈ Xi and W unrestricted or a unit of N

(iii) πN
W (ti) 6= πN

W (tj) if W /∈ Xi ∩ Xj and W unrestricted

Proof. We distinguish several cases, depending on the form of N .
For N = A chose t = a and

ti =

{
a if Xi = {λ,A}
ai 6= a if Xi = {λ}

and the ai pairwise different if dom(A) is infinite. This obviously meets conditions (i)-(iii).
For N = (M1, . . . , Mk) we construct t, t1, . . . , tn inductively on the structure of N . Let

tMj , t
Mj

i denote the tuples constructed on the nested attribute Mj w.r.t. πN
Mj

(Xi)
1. We

chose t = (tM1 , . . . , tMk) and ti = (tM1
i , . . . , tMk

i). It is easy to see that the tuples t, ti meet

conditions (i)-(iii) if the tuples tMj , t
Mj

i do.
For N = [M], we have Xi = {[X] | X ∈ Yi} ∪ {λ} for some ideal Yi ⊆ M↓. If λ ∈ Yi

then by Lemma 2.76 there exist tuples tM,i, t
′
M,i ∈ dom(M) which are identical exactly on

Yi. Otherwise let tM,i be arbitrary. We then construct t, t1, . . . , tn as follows:

t = [tM,1, . . . , tM,n]

ti =

{
[tM,1, . . . , t

′
M,i, . . . , tM,n] if λ ∈ Yi

arbitrary of length n + i otherwise, i.e., if Xi = {λ}

With this definition, tuples ti with Xi = {λ} are of unique length, and thus differ from
tuples t, tj with j 6= i on all subattributes except λ. For other tuples ti, tj we have

πN
W (ti) = πN

W (t) iff πN
W (t′M,i) = πN

W (tM,i)

which shows conditions (i) and (ii), as well as

πN
W (ti) = πN

W (tj) iff πN
W (t′M,i) = πN

W (tM,i) ∧ πN
W (t′M,j) = πN

W (tM,j)

from which (iii) follows.

1Strictly speaking we would have to distinguish between Mj and the subattribute (λ, . . . , Mj , . . . , λ) ≤
N . We will neglect this subtlety for ease of readability.

50

For N = 〈M〉 let tN,i, t
′
N,i ∈ dom(N) be tuple pairs with πN

W (tN,i) = πN
W (t′N,i) if and

only if W ∈ Xi, which exist by Lemma 2.75. We then define

t = c · tN,1 ∪ . . . ∪ cn · tN,n

ti = c · tN,1 ∪ . . . ∪ ci · t′N,i . . . ∪ cn · tN,n

with c ∈ N sufficiently large, i.e., larger than the multiplicity of any element in the multi-
sets tN,1, . . . , tN,n, t

′
N,1, . . . , t

′
N,n. Here c · tN,1 denotes the multiset obtained by multiplying

the multiplicity of all elements of tN,1 with c. This allows us to determin the ”origin” of
an element e of t or ti from its multiplicity multe(t/ti): For every tuple t, t1, . . . , tn we
have

multe(t/ti) = multe (c ·M1 ∪ . . . ∪ cn ·Mn)
= c ·multe(M1) + . . . + cn ·multe(Mn)
= c · a1 + . . . + cn · an

(2.5)

for some multisets M1, . . . , Mn and some values a1, . . . , an ∈ {0, . . . , c − 1}. Given a
multiplicity multe(t/ti) there exists only one set of values a1, . . . , an ∈ {0, . . . , c− 1} such
that (2.5) holds. Consequently, we can uniquely determine the multisets M1, . . . , Mn given
t or some ti. Conditions (i)-(iii) can then be shown as in the case of lists.

What remains is the case of sets. For N = {M} with N restricted, we use that by
lemma 5.10 there exist two tuples tN 6= t′N which are identical on N↓ \ N . We then set
t = tN and

ti =

{
tN if Xi = N↓

t′N otherwise

which clearly meet condition (i)-(iii).
For N = {M} with N unrestricted, we adapt the proof of lemma 5.10 in [29]. For

every index i = 1, . . . , n we define different identifying terms:

• τ i
λ(λ) = ok,

• τ i
A(λ) = a, τ i

A(A) = ai with a, ai ∈ dom(A), a 6= ai and a1, . . . , an pairwise different
if dom(A) is infinite

• τ i
L(N1,...,Nn)(L(M1, . . . , Mn)) = (τ i

N1
(M1), . . . , τ

i
Nn

(Mn)),

• τ i
L{N}(L{M}) = {τ i

N(M)} and τ i
L{N}(λ) = ∅,

• τ i
L〈N〉(L〈M〉) = 〈τ i

N(M), . . . , τ i
N(M)〉 of cardinality i and τ i

L〈N〉(λ) = 〈 〉,

• τ i
L[N](L[M]) = [τ i

N(M), . . . , τ i
N(M)] of length i and τ i

L[N](λ) = [].

Note that with this definition the identifying terms τ i
N(M) of a subattribute M with

infinite domain are pairwise different.
We then create pairs of tuples tN,i, t

′
N,i ∈ dom(N) with πN

W (tN,i) = πN
W (t′N,i) if and only

if W ∈ Xi as in [29, Lemma 5.10], but using the corresponding identifying terms τ i
N(. . .).

That is, we have X = {L{X} : X ∈ Y} ∪ {λ} for some Y ⊆ Sub(M), and define

tN,i = {τ i
M(X) : X ≤ M}

t′N,i = {τ i
M(X) : X ∈ Y}

51

The tuple pairs tN,i, t
′
N,i are used to construct the tuples t, t1, . . . , tk as follows:

t = tN,1 ∪ . . . ∪ tN,n

ti = tN,1 ∪ . . . ∪ tN,i−1 ∪ t′N,i ∪ tN,i+1 ∪ . . . ∪ tN,n

Condition (i) clearly holds, since equivalence of tN,i and t′N,i on W implies equivalence
of t and ti on W . Now let W = {V } meet the ’if’ condition of (ii). By construction we
have

τ i
M(V) ∈ πN

W (tN,i) \ πN
W (t′N,i)

Furthermore, W must be unrestricted, since N is unrestricted and the only unit of N . As
the identifying terms of unrestricted subattributes are all different, τ i

M(V) does not lie in
any set πN

W (tN,j) for j 6= i either. Thus πN
W (ti) 6= πN

W (t), which shows (ii). Condition (iii)
is proven analogous to (ii).

The following example illustrates the construction for multisets and sets.

Example 2.26. [Multiset] Let N = 〈{{A}}〉 and

X1 = {λ, 〈λ〉, 〈{λ}〉, 〈{{λ}}〉}
X2 = {λ, 〈λ〉, 〈{λ}〉}
X3 = {λ, 〈λ〉}
X4 = {λ}

Lemma 2.75 might give us the following tuples:

tN,1 = 〈{{a1}}〉, t′N,1 = 〈{{a2}}〉
tN,2 = 〈{{a1}}〉, t′N,2 = 〈{∅}〉
tN,3 = 〈{∅}〉, t′N,3 = 〈∅〉
tN,4 = 〈〉, t′N,4 = 〈∅〉

Since all multisets above contain only a single element (or less), it suffices to choose c = 2.
Using our construction we obtain

t = 2 · tN,1 ∪ 4 · tN,2 ∪ 8 · tN,3 ∪ 16 · tN,4

= 2 · 〈{{a1}}〉 ∪ 4 · 〈{{a1}}〉 ∪ 8 · 〈{∅}〉 ∪ 16 · 〈〉
= 〈{{a1}}6, {∅}8〉

t1 = 〈{{a2}}2, {{a1}}4, {∅}8〉
t2 = 〈{{a1}}2, {∅}12〉
t3 = 〈{{a1}}6, ∅8〉
t4 = 〈{{a1}}6, {∅}8, ∅16〉

where 〈En〉 means that element E occurs n times in the multiset.

[Set] Now let N = {AB} with dom(A), dom(B) infinite, and

X1 = {λ, {λ}, {A}, {B}}
X2 = {λ, {λ}, {A}}
X3 = {λ, {λ}, {B}}

52

Using our construction for sets we get

tN,1 = {(a, b), (a1, b), (a, b1), (a1, b1)}, t′N,1 = {(a, b), (a1, b), (a, b1)}
tN,2 = {(a, b), (a2, b), (a, b2), (a2, b2)}, t′N,2 = {(a, b), (a2, b)}
tN,3 = {(a, b), (a3, b), (a, b3), (a3, b3)}, t′N,3 = {(a, b), (a, b3)}

and from this

t = tN,1 ∪ tN,2 ∪ tN,3

= {(a, b), (a1, b), (a, b1), (a1, b1), (a2, b), (a, b2), (a2, b2), (a3, b), (a, b3), (a3, b3)}
t1 = {(a, b), (a1, b), (a, b1), (a2, b), (a, b2), (a2, b2), (a3, b), (a, b3), (a3, b3)}
t2 = {(a, b), (a1, b), (a, b1), (a1, b1), (a2, b), (a3, b), (a, b3), (a3, b3)}
t3 = {(a, b), (a1, b), (a, b1), (a1, b1), (a2, b), (a, b2), (a2, b2), (a, b3) }

In both cases (multiset and set) it is easy to check that the t, ti constructed meet the
conditions (i)-(iii) of Lemma 2.77.

Comparing the last lemma to Lemma 2.76, one may wonder why we require in condition
(ii) that W is unrestricted or a unit, and whether this requirement can be omitted. The
following example shows that it is really needed.

Example 2.27. Let N = {AB} and X1 = X2 = {λ},X3 = {λ, {λ}, {B}}. Let further
t, t1, t2 be tuples on N which meet the conditions of Lemma 2.77. If t = ∅ then by
condition (i) it follows that t3 = ∅, which violates condition (ii) for W = {A}. So t 6= ∅.
If t1 = t2 = ∅ then condition (iii) is violated for W = {A}. So t1 6= ∅ or t2 6= ∅, say t1 6= ∅.
But then we have

πN
{λ}(t1) = {ok} = πN

{λ}(t)

which shows that the restriction on W in condition (ii) is necessary.

We are now ready to prove Lemma 2.69.

Lemma 2.78 (2.69). Let N be a nested attribute with FDs Σ. If Σ is not LHS-restricted,
then every lossless decomposition of N contains an extended subattribute which forms a
key of N .

Proof. We will proceed as in the proof of Lemma 2.71. Let D = {N1, . . . , Nn} be a
decomposition of N not containing a key schema, i.e., an extended subattribute which
forms a key of N . For Ni ∈ D define Xi := (N∗

i)↓. Then there exist tuples t, t1, . . . , tn
on N which meet the conditions (i)-(iii) of Lemma 2.77. We define r = {t1, . . . , tn}, and
start by showing that Σ holds on r.

So let X → Y ∈ Σ and ti, tj ∈ r be two tuples with πN
X (ti) = πN

X (tj). Then X is
unrestricted by assumption, so from condition (iii) it follows that X ⊆ Xi ∩Xj. Thus, by
definition of Xi,Xj, we have Y ⊆ Xi ∩ Xj, which gives us πN

Y (ti) = πN
Y (tj) by condition

(i). It follows that X → Y holds on r.

Also by condition (i), the tuple t lies in ./ r[D]. It remains to be shown that t /∈ r.
By assumption Ni is not a key of N , so Xi does not contain all units of N . Thus ti 6= t
by condition (ii), which shows that D is not lossless.

53

2.3.6 Testing for BCNF

We still require an efficient way to test whether an extended subattribute S is in BCNF.
In the relational case we projected Σ∗a onto the subschema to be tested. However, as
example 2.19 demonstrated, computing Σ∗a is often inefficient. Instead we will show that
it is sufficient to project Σ∗max onto S, although we need to adjust our notion of projection.

Definition 2.79. Let Σ be a set of FDs on the nested attribute N , and S ≤ N be an
extended subattribute of N . The projection of Σ onto S is

Σ[S] := {X → Y u S | X → Y ∈ Σ ∧X ≤ S}
The meet Y u S on extended subattributes is induced by the extended subattribute

order on them (Definition 2.66), and can be computed as

Y u S = d{y u s | y ∈ Y ∧ s ∈ S}e
Note that with this new notion of projection we do not lose any FDs, and all FDs

gained through projection are still implied by Σ. In the relational case the two notions of
projection are (almost) identical for singular FDs: If X → Y ∈ Σ is singular then either
Y ⊆ S or Y ∩ S = ∅, and in the latter case X → Y ∩ S is trivial. This is not true for
nested attributes:

Example 2.28. Consider the set of singular FDs

Σ = {A → {BC}, {BC} → A}
on the nested attribute N = A{BC}. The projection of Σ onto S = A{B} is

Σ[S] = {A → {B}}
rather than the empty set.

We can use this form of projection to construct a cover on an extended subattribute.

Lemma 2.80. Let Σ be a set of FDs on N , and S ≤ N . Then Σ∗max[S] is a cover for
Σ∗[S].

Proof. Clearly Σ∗[S] ² Σ∗max[S], so we only need to show implication in the opposite
direction. For that we use that the maximal atomic FDs

(Σ∗[S])∗max ⊆ Σ∗[S]

form a cover of Σ∗[S], and show that each of them is implied by a FD in Σ∗max[S].
So let X → A ∈ Σ∗[S] be maximal atomic on S. Then X → A is atomic w.r.t. Σ, and

there exists a maximal atomic FD X → A′ ∈ Σ∗max with A ≤ A′. Thus

X → A′ u S ∈ Σ∗max[S]

and X → A′ u S implies X → A.

The last lemma allows us to construct a cover of Σ∗[S] efficiently, as Σ∗max can be
computed using linear NA-resolution. This cover can then be used to test for BCNF as
in the relational case.

54

Chapter 3

Canonical Covers

When given a set Σ of functional dependencies for schema decomposition, instance val-
idation or similar tasks, we may choose to use a cover Σ′ of functional dependencies
equivalent to Σ instead. The choice of Σ′ is important, as it determines the result of the
decomposition (as we have seen in chapter 2), the speed of updates, and generally can
have a huge impact on database performance. Optimal results are usually achieved by
covers which are in some standard form, typically canonical or LR-reduced, but finding
these optimal covers is often NP-hard.

We approach the problem by providing an algorithm for computing the set of all
canonical covers, using an efficient form of representation. Once computed, finding the
best canonical (or LR-reduced) cover w.r.t. some criteria is then a simple matter of
comparing covers.

Example 3.1. Consider again the schema CLRT from example 2.1 with

Σ = {C → L, CT → R, LT → C, RT → C}
Instead of using Σ, a designer could instead use any of its canonical covers:

{C → L,CT → R, LT → C, RT → C},
{C → L,CT → R, LT → C, RT → L},
{C → L,LT → R, RT → C}

The last cover is the best choice, since it is smaller than the others and induced a BCNF
decomposition when using it for the synthesis approach.

Note though that the number of canonical covers can be exponential in the number
of attributes and FDs. It may therefore be more efficient to try computing only the
cover which is actually needed. However, for some problems finding the desired cover
directly (or testing whether one exists) can be difficult - we will see an example for this in
section 4.5.1. But even if more efficient methods can be found, which compute the desired
cover without computing all canonical covers first, the tools we develop for computing all
canonical covers may prove useful in finding specific covers as well.

In order to make computing the set of all canonical covers feasible when the number
of such covers is huge, we need to decompose it into smaller “partial” covers, to represent
it efficiently. The decomposition we have in mind is the following:

Example 3.2. Let Σ consist of the following FDs:

Σ = {AB → C, C → A,A → D, D → E,E → A}

55

Then Σ has the following canonical covers:

CC(Σ) =

{AB → C, C → A,A → D, D → E, E → A},
{AB → C, C → A,A → E,E → D,D → A},
{AB → C, C → A,A → D, D → A, A → E, E → A},
{AB → C, C → A,A → D, D → A, D → E, E → D},
{AB → C, C → A,A → E,E → A,D → E, E → D},
{DB → C,C → A, A → D, D → E, E → A},
{DB → C,C → A, A → E,E → D, D → A},
{DB → C,C → A, A → D, D → A,A → E, E → A},
{DB → C,C → A, A → D, D → A,D → E, E → D},
{DB → C,C → A, A → E,E → A,D → E,E → D},
{EB → C, C → A,A → D, D → E,E → A},
{EB → C, C → A,A → E, E → D,D → A},
{EB → C, C → A,A → D, D → A, A → E,E → A},
{EB → C, C → A,A → D, D → A, D → E, E → D},
{EB → C, C → A,A → E, E → A,D → E, E → D},
{AB → C, C → D, A → D, D → E, E → A},
{AB → C, C → D, A → E,E → D, D → A},
{AB → C, C → D, A → D, D → A,A → E, E → A},
{AB → C, C → D, A → D, D → A,D → E, E → D},
{AB → C, C → D, A → E,E → A,D → E,E → D},
{DB → C,C → D, A → D, D → E, E → A},
{DB → C,C → D, A → E, E → D, D → A},
{DB → C,C → D, A → D, D → A,A → E, E → A},
{DB → C,C → D, A → D, D → A,D → E, E → D},
{DB → C,C → D, A → E, E → A,D → E,E → D},
{EB → C, C → D, A → D, D → E, E → A},
{EB → C, C → D, A → E,E → D, D → A},
{EB → C, C → D, A → D, D → A,A → E, E → A},
{EB → C, C → D, A → D, D → A,D → E, E → D},
{EB → C, C → D, A → E,E → A,D → E,E → D},
{AB → C, C → E,A → D, D → E,E → A},
{AB → C, C → E,A → E, E → D,D → A},
{AB → C, C → E,A → D, D → A, A → E,E → A},
{AB → C, C → E,A → D, D → A, D → E, E → D},
{AB → C, C → E,A → E, E → A,D → E, E → D},
{DB → C,C → E,A → D, D → E, E → A},
{DB → C,C → E,A → E,E → D, D → A},
{DB → C,C → E,A → D, D → A,A → E, E → A},
{DB → C,C → E,A → D, D → A,D → E, E → D},
{DB → C,C → E,A → E,E → A,D → E,E → D},
{EB → C, C → E, A → D,D → E,E → A},
{EB → C, C → E, A → E, E → D,D → A},
{EB → C, C → E, A → D,D → A,A → E,E → A},
{EB → C, C → E, A → D,D → A,D → E,E → D},
{EB → C, C → E, A → E, E → A,D → E, E → D}

56

Instead of using this bulky “direct” representation, we decompose CC(Σ) into sets of
partial covers. We then obtain a full cover by selecting one partial cover from each set
and forming their union:

CC(Σ) =

{AB → C},
{DB → C},
{EB → C}

∨

{C → A},
{C → D},
{C → E}

∨

{A → D,D → E,E → A},
{A → E, E → D,D → A},
{A → D,D → A,A → E,E → A},
{A → D,D → A,D → E,E → D},
{A → E, E → A,D → E, E → D}

Using this decomposed representation, dealing with CC(Σ) becomes much easier.

3.1 Hypergraph Decomposition

The set of all canonical covers of a given set of FDs forms a simple hypergraph. We shall
therefore establish some results on representing hypergraphs in general, which will be
useful in representing (and even computing) the set of all canonical covers in particular.

Definition 3.1. A hypergraph H on a vertex set V is a set of subsets of V , i.e., H ⊆ P(V).
The elements of H are called edges. A hypergraph is called simple if none of its edges is
included in another.

Definition 3.2. The set ϑH of vertices actually appearing in edges of a hypergraph H is
called the support of H:

ϑH :=
⋃
e∈H

e

Note that we do allow the empty edge in a hypergraph, and that we do not require
that V = ϑH . The latter point is not important but simplifies some arguments.

Definition 3.3. Let H,G be hypergraphs. We define the cross-union H ∨G of H and G
as

H ∨G := {eH ∪ eG | eH ∈ H, eG ∈ G}
If VH , VG are the vertex sets of H and G then H ∨G is a hypergraph on VH ∪ VG.

Definition 3.4. Let H be a hypergraph on vertex set V and S some vertex set. The
projection H[S] of H onto S is

H[S] := {e ∩ S | e ∈ H},
which is a hypergraph on V ∩ S.

3.1.1 Autonomous Sets

We shall introduce the concept of an autonomous vertex set. Note that our definition
is not meant to extend any use of the term ”autonomous set” in the context of graphs,
where it is better known as “module”, and characterizes vertex sets M in which each
vertex v ∈ M has the same neighbors outside M . Using our terminology, autonomous
sets are only interesting for hypergraphs but not for graphs. Essentially the only graphs
with non-trivial autonomous sets are complete bipartite graphs, with the possibility to
add isolated vertices and/or loops to all vertices of one side of the bipartition.

57

Definition 3.5. Let H be a hypergraph on the vertex set V . We call a vertex subset
S ⊆ V autonomous if H = H[S] ∨H[S] where S := V \ S denotes the complement of S.

Clearly the complement of an autonomous set is itself autonomous, and

H ⊆ H[S] ∨H[S]

for any S ⊆ V . The sets ∅, V are autonomous for any hypergraph H on V , as are all
subsets of V \ ϑH and their complements.

Example 3.3. Consider the vertex set V = ABCDE, and on it the hypergraph

H = {AC, AD, BC, BD}

H is simple, and its support is ϑH = ABCD. The set S = AB is autonomous for H, as
is its complement S = CDE, since

H[AB] ∨H[CDE] = {A,B} ∨ {C, D} = {AC, AD, BC,BD} = H

Lemma 3.6. Let S, T ⊆ V be autonomous. Then S ∩ T is autonomous as well.

Proof. We need to show that for every pair of edges e1, e2 ∈ H the edge e′1 ∪ e′2 with
e′1 := e1 ∩ (S ∩ T) and e′2 := e2 ∩ S ∩ T lies in H as well. Since S is autonomous,
the edge e′ := (e1 ∩ S) ∪ (e2 ∩ S) lies in H. Thus, since T is autonomous, the edge
e′′ := (e′ ∩ T) ∪ (e2 ∩ T) lies in H. Clearly

e′′ ∩ (S ∩ T) = e′ ∩ (S ∩ T) = e1 ∩ (S ∩ T) = e′1

and similarly

e′′ ∩ S ∩ T = (e′ ∩ (T \ S)) ∪ (e2 ∩ T)

= (e2 ∩ (T \ S)) ∪ (e2 ∩ T)

= e′2

which shows e′1 ∪ e′2 = e′′ ∈ H.

Corollary 3.7. Let S, T ⊆ V be autonomous. Then S ∪ T is autonomous.

Proof. The complements and intersections of autonomous sets are autonomous by defini-
tion and by Lemma 3.6, respectively, and we have

S ∪ T = S ∩ T

Proposition 3.8. Let H, G be hypergraphs and S1, S2 vertex sets. Then we have

(i) H[S1][S2] = H[S1 ∩ S2]

(ii) (H ∨G)[S1] = H[S1] ∨G[S1]

58

Lemma 3.9. Let H be a hypergraph on V and S ⊆ V autonomous for H. Then for any
T ⊆ V the set S ∩ T is autonomous for H[T].

Proof. Since S is autonomous for H we have H = H[S] ∨H[S]. Thus

H[T] = (H[S] ∨H[S])[T]
= H[S][T] ∨H[S][T]
= H[T][S ∩ T] ∨H[T][S ∩ T]

Theorem 3.10. Let H be a hypergraph on V and {S1, . . . , Sn} a partition of V into
autonomous sets. Then

H = H[S1] ∨ . . . ∨H[Sn]

Proof. By induction on n. The equation hold trivially for n = 1. Assume now the
theorem holds for a fixed value of n. To show the theorem for n+1 we use that Sn∪Sn+1

is autonomous by Corollary 3.7, so that by assumption we have

H = H[S1] ∨ . . . ∨H[Sn−1] ∨H[Sn ∪ Sn+1]

By Lemma 3.9 Sn is autonomous for H[Sn ∪ Sn+1], i.e., we have

H[Sn ∪ Sn+1] = H[Sn] ∨H[Sn+1]

which shows the theorem for n + 1.

When talking about minimal autonomous sets , we will always mean minimal w.r.t.
inclusion among all non-empty autonomous sets, even though the empty set is always
autonomous by definition. While it would be more precise to call them minimal non-
empty autonomous sets, this quickly becomes tedious.

Theorem 3.11. Every hypergraph H has a finest partition {S1, . . . , Sn} into minimal
autonomous sets. The autonomous sets of H are just the unions of these sets.

Proof. Let S1, . . . , Sn be the minimal autonomous sets of H. By Lemma 3.6 they are
pairwise disjoint. The union of autonomous sets is itself autonomous by Corollary 3.7, in
particular

S :=
n⋃

i=1

Si

Furthermore the complement of S is autonomous, and since S does not include any min-
imal autonomous set it is empty, i.e., S = V . Thus the sets S1, . . . , Sn form a partition of
V .

Whenever an autonomous set T intersects with some Si it must include it completely,
since otherwise T ∩Si would be a smaller non-empty autonomous set by Lemma 3.6. Thus
each autonomous set is the union of those Si it intersects with.

Example 3.4. Consider again H = {AC, AD, BC, BD} on V = ABCDE. Then

H = H[AB] ∨H[CD] ∨H[E] = {A,B} ∨ {C, D} ∨ {∅}
so the minimal autonomous sets of H are AB,CD,E. Thus H has a total of 23 au-
tonomous sets:

∅, AB, CD, E, ABCD, ABE, CDE,ABCDE

59

We now consider another type of decomposition, which will help us in characterizing
the autonomous sets of simple hypergraphs.

Definition 3.12. Let H be a hypergraph on vertex set V . The subhypergraph H 〈S〉 of
H induced by S ⊆ V is

H 〈S〉 := {e ∈ H | e ⊆ S}
Definition 3.13. Let H be a hypergraph on the vertex set V . We call a vertex subset
S ⊆ V isolated if H = H 〈S〉 ∪H

〈
S
〉
.

Clearly S is isolated if and only if every edge it intersects with lies completely in S.
As with minimal autonomous sets, we will mean by minimal isolated sets the minimal
sets (w.r.t. inclusion) among all non-empty isolated sets.

Definition 3.14. As with graphs, we say that two vertices v1, vn in a hypergraph H are
connected if there exists a sequence v1, v2, . . . , vn such vi, vi+1 always lie in some common
hyperedge of H. H is connected if all its vertices are connected. The connected components
of H are its connected subhypergraphs.

It follows immediately that the minimal isolated sets of H are the vertex sets of its
maximal connected components, and that the isolated sets of H are the unions of them.

Definition 3.15. Let H be a hypergraph on V . A set t ⊆ V is a transversal of H if
t intersects with every edge of H. We denote the set of all minimal transversals (w.r.t.
inclusion) by Tr(H), and call Tr(H) the transversal hypergraph of H.

Clearly Tr(H) is a simple hypergraph on V , even if H is not simple.

Theorem 3.16. Let H, G be hypergraphs on disjoint vertex sets VH and VG. Then

Tr(H ∨G) = Tr(H) ∪ Tr(G)

Tr(H ∪G) = Tr(H) ∨ Tr(G)

Proof. (1) We first show that a set t ⊆ V := VH ∪ VG is a transversal of H ∨ G iff
it intersects with every edge of H or with every edge of G. For the “if” part, assume
w.l.o.g. that t intersects with every edge of H. Since every edge e ∈ H ∨G is of the form
e = eH ∪ eG with eH ∈ H, eG ∈ G, t intersects with e because it intersects with eH . We
show the “only if” part by contraposition and assume that there be edges eH ∈ H, eG ∈ G
such that t intersects with neither of them. But then t does not intersect eH ∪eG ∈ H ∨G
either, i.e., t is not a transversal of H ∨G.

We thus have that the transversals of H ∨ G are the transversals of H plus the
transversals of G. Thus the minimal transversals of H ∨ G are the minimal elements
of Tr(H) ∪ Tr(G). Since VH and VG are disjoint, all elements of Tr(H) ∪ Tr(G) are
minimal. Thus

Tr(H ∨G) = Tr(H) ∪ Tr(G)

(2) By definition a set t ⊆ V is a transversal of H ∪ G iff it is a transversal of both
H and G. Thus the transversals of H ∪ G are the unions of transversals of H with
transversals of G. The minimal transversals of H ∪G are therefore the minimal elements
of Tr(H) ∨ Tr(G). Since VH and VG are disjoint, all elements of Tr(H) ∨ Tr(G) are
minimal. Thus

Tr(H ∪G) = Tr(H) ∨ Tr(G)

60

Lemma 3.17. [7] Let H be a simple hypergraph. Then Tr(Tr(H)) = H.

We are now able to characterize the autonomous sets of a simple hypergraph.

Theorem 3.18. Let H be a simple hypergraph. Then the autonomous sets of H are the
isolated sets of its transversal hypergraph Tr(H).

Proof. Let S ⊆ V be autonomous for H, i.e., H = H[S] ∨H[S]. Then

Tr(H) = Tr(H[S]) ∪ Tr(H[S])

by Theorem 3.16, so S is isolated for Tr(H).
Conversely let S be any isolated set of Tr(H). Then

Tr(H) = Tr(H) 〈S〉 ∪ Tr(H)
〈
S
〉

and by Theorem 3.16 we have

Tr(Tr(H)) = Tr(Tr(H) 〈S〉) ∨ Tr(Tr(H)
〈
S
〉
)

Thus S is autonomous for Tr(Tr(H)) = H.

Example 3.5. The requirement that H be simple in Theorem 3.18 is necessary: Consider
the hypergraphs

H = {AC, AD, BC, BD}
and

H ′ = H ∪ {ABC}
Both H and H ′ have the same minimal transversals

Tr(H) = Tr(H ′) = {AB,CD}
Clearly AB,CD are isolated sets of Tr(H ′), but AB and CD are not autonomous for H ′:

H ′[AB] ∨H ′[CD] = {A,B, AB} ∨ {C,D}
= {AC,AD, BC, BD, ABC, ABD}
= H ′ ∪ {ABD} 6= H ′

Since graphs are just special hypergraphs, our theory of autonomous sets applies to
them as well. Clearly all complete bipartite graphs have a non-trivial partition into two
autonomous sets, but one may wonder whether there are others.

Lemma 3.19. A simple graph G without isolated vertices has a non-trivial partition into
autonomous sets iff it is complete bipartite.

Proof. Let S /∈ {∅, ϑG} be autonomous. Since G contains no isolated vertices, G[S] and
G[S] contain non-empty edges. As all edges in a simple graph contain exactly two vertices,
the edges of G[S] and G[S] contain exactly one vertex each. Thus G = G[S] ∨ G[S] is
complete bipartite.

We note that non-simple graphs with non-trivial autonomous partition may also have
loops on all vertices of one side of the bipartition, as well as isolated vertices.

61

3.1.2 Superedges and Partial Superedges

While canonical covers will form the edges in our hypergraph, we will have to argue about
atomic covers, i.e., sets of atomic FDs which form a cover, but may contain more FDs
than needed. We call such supersets of edges “superedges”.

Definition 3.20. Let H be a hypergraph on V . A set E ⊆ V is called a superedge of H
if it includes some edge e ∈ H, i.e. e ⊆ E. We call E ⊆ S ⊆ V a partial (super)edge on
S if E is a (super)edge of H[S].

Lemma 3.21. Let H be a hypergraph on V and S ⊆ V . A set S ′ ⊆ S is a partial
superedge on S iff S ′ ∪ S is a superedge.

Proof. By definition S ′ is a partial superedge on S iff it includes a partial edge eS ∈ H[S],
i.e. iff there exists an edge e ∈ H with e ∩ S = eS ⊆ S ′. Since

e = eS ∪ (e ∩ S) ⊆ S ′ ∪ S

this implies that S ′ ∪S is a superedge. Conversely, if S ′ ∪S is a superedge, it includes an
edge e ∈ H, which gives us

e ∩ S ⊆ (S ′ ∪ S) ∩ S = S ′

Lemma 3.22. Let H be a hypergraph on V and P = {S1, . . . , Sn} a partition of V into
autonomous sets. A set E ⊆ V is a superedge iff Ei := E ∩ Si is a partial superedge on
Si for i = 1, . . . , n.

Proof. If E is a superedge then it includes an edge e ∈ H. Thus Ei includes e∩Si ∈ H[Si],
which makes Ei a partial superedge on Si.

Now for each i = 1, . . . , n let Ei be a partial superedge on Si, including the partial
edge ei ∈ H[Si]. Thus E includes

e := e1 ∪ . . . ∪ en ∈ H[S1] ∨ . . . ∨H[Sn]
(thm 3.10)

= H

which makes E a superedge of H.

We can therefore strengthen Lemma 3.21 when S is autonomous:

Lemma 3.23. Let H be a hypergraph on V , E ⊆ V a superedge and S ⊆ V autonomous.
A set S ′ ⊆ S is a partial superedge on S iff S ′ ∪ (E \ S) is a superedge.

Proof. By Lemma 3.22, the set S ′ ∪ (E \ S) is a superedge iff S ′ is a partial superedge
on S and E \ S is a partial superedge on S. Since E is a superedge, Lemma 3.22 assures
that E \ S = E ∩ S is a partial superedge on S.

62

3.1.3 Computing Autonomous Sets

To complete this section, we now address the question of computing the minimal au-
tonomous sets of H. While Theorem 3.18 suggests an approach (at least for simple
hypergraphs), computing the transversal hypergraph can lead to exponential runtime.
Instead, we shall utilize the following observation.

Lemma 3.24. Let H be a hypergraph on V and P = {S1, . . . , Sn} the partition of V into
minimal autonomous sets. Let further H ′

1 ⊆ H[S1] be non-empty, and H ′ ⊆ H be the
hypergraph

H ′ := H ′
1 ∨H[S2] ∨ . . . ∨H[Sn].

Then S2, . . . , Sn are minimal autonomous sets of H ′.

Proof. By definition S2, . . . , Sn are autonomous for H ′. If one of those Si were not minimal
for H ′, i.e., could be partitioned into smaller autonomous sets T1, . . . , Tk, then

H[Si] = H[T1] ∨ . . . ∨H[Tk]

and thus the sets Ti would be autonomous for H as well, contradicting the minimality of
Si.

We use this to compute the partition of V into minimal autonomous sets as follows.
We pick some vertex v ∈ V and split H into two hypergraphs, one containing all the edges
which contain v, the other one containing all those edges which do not contain v. We will
need only one of them, so let Hv be the smaller one of the two, i.e., the one with fewer
edges (if both contain exactly the same number of edges we may choose either one):

Hv := smaller of

{ {e ∈ H | v ∈ e}
{e ∈ H | v /∈ e}

If Hv is empty, then v lies in all or no edges of H, and in both cases the set {v} is
autonomous for H. This reduces the problem of finding the minimal autonomous sets of
H to finding the minimal autonomous sets of H[v], where v := ϑH \ {v}, as they are also
minimal autonomous sets of H.

Consider now the case where Hv is not empty. Let S1 be the minimal autonomous set
of H containing v. Then Hv has the same form as H ′ in Lemma 3.24, where H ′

1 contains
either the edges of H[S1] which do or those which do not contain v. We now compute
the minimal autonomous sets of Hv, and check for each set whether it is autonomous for
H. By Lemma 3.24 the sets autonomous for H are exactly the S2, . . . , Sn, while the sets
not autonomous for H partition S1. Taking the union of those non-autonomous sets and
keeping the autonomous ones thus gives us the minimal autonomous sets of H. Note that
the set {v} is always autonomous for Hv, as v is contained in either all or no edges of Hv.
Thus it suffices to compute the minimal autonomous sets of Hv[v].

In either case we have reduced the problem of finding the minimal autonomous set of
H to that of finding the minimal autonomous sets of a hypergraph with fewer vertices.
This gives us the following recursive algorithm.

63

Algorithm “Recursive Autonomous Partitioning”

INPUT: hypergraph H
OUTPUT: partition of ϑH into minimal autonomous sets

function RAP(H)
select vertex v ∈ ϑH

Hv := smaller of

{ {e ∈ H | v ∈ e}
{e ∈ H | v /∈ e}

if Hv = ∅ then
return {{v}} ∪RAP (H[v])

else
Aut := ∅, S1 := {v}
Autv := RAP (Hv[v])
for all S ∈ Autv do

if S autonomous for H then
Aut := Aut ∪ {S}

else
S1 := S1 ∪ S

end
return {S1} ∪ Aut

While the test whether a set S is autonomous for H can be performed by computing
H ′ := H[S]∨H[S] and comparing it to H, the resulting set can easily contain up to |H|2
edges if S is not autonomous. We observe that always H ⊆ H ′ and thus H = H ′ iff
|H| = |H ′|. Since |H ′| = |H[S]| · |H[S]|, the later condition can be checked faster without
actually computing H ′.

Theorem 3.25. Let H be a hypergraph with k vertices and n edges. Then the ”Re-
cursive Autonomous Partitioning” algorithm computes the partition of ϑH into minimal
autonomous sets of H in time O(nk2).

Proof. We have already argued that the algorithm computes the minimal autonomous
sets of H correctly, so we only need to show the time bound.

The depth of recursion is at most k. In each call we compute Hv, which can be done
in O(n). If Hv = ∅ we only need to compute H[v], which is possible in O(nk). Thus this
part of the algorithm can be performed in O(nk2).

If Hv 6= ∅ we need to test each set found to be autonomous for Hv whether it is
autonomous for H. The number of such tests is at most k, and each test can be performed
in O(nk), by computing H[S] and H[S] and testing whether |H| = |H[S]| · |H[S]|. This
leads to a complexity of O(nk2). Since the number of edges of Hv is at most half of the
number of edges of H, the number of steps required for performing the tests on Hv (or
the next subgraph in the recursion for which tests are required) is at most half as many.
This leads to a total complexity of

O((n +
n

2
+

n

4
+ . . .)k2) = O(nk2)

64

3.2 Computing all Canonical Covers

Recall that we wish to compute the set of all canonical covers as a general method for
finding covers which are best in some sense. Of cause, this approach only works if at least
some of the optimal solutions are canonical, and comparing two given covers is easy. We
will see later that these conditions are met for a number of hard problems, for which no
efficient algorithms are known.

In the following we will develop an algorithm for computing the set of all canonical
covers. As far as we know, no such algorithm has appeared in the literature so far.

Definition 3.26. Let Σ be a set of FDs. We denote the set of all canonical covers of Σ
by

CC(Σ) := {G ⊆ Σ∗a | G is a canonical cover of Σ}
Note that the problem of finding canonical covers is similar to that of finding minimal

keys. Instead of seeking all minimal sets of attributes that determine all other attributes,
we seek all minimal sets of FDs which imply all other FDs. For this we will use the linear
resolution algorithm introduced in chapter 2.

3.2.1 Partial Covers

The set of all canonical covers of Σ forms a simple hypergraph on the FDs in Σ∗a. We
may thus use the terms defined for hypergraphs for canonical covers as well. In particular,
we shall talk about autonomous sets of FDs, and (partial) superedges. Note that in this
context the superedges are the atomic covers, while the edges are the canonical covers.

Definition 3.27. We call a set of FDs in Σ∗a autonomous if it is autonomous for the
hypergraph CC(Σ). When talking about transversals, we always mean transversals of
CC(Σ).

Lemma 3.28. A set G ⊆ Σ∗a is a cover of Σ iff it intersects with all minimal transversals
of CC(Σ).

Proof. G is a cover iff it is a superedge of CC(Σ). Furthermore, CC(Σ) is simple, and
by Lemma 3.17 the edges of a simple hypergraph are the minimal sets which intersect
with all minimal transversals. Thus superedges are simply sets (not necessarily minimal)
which intersect with all minimal transversals.

As superedges become (atomic) covers for the hypergraph CC(Σ), partial superedges
become partial covers.

Definition 3.29. Let Σ be a set of FDs and G ⊆ S ⊆ Σ∗a. We call G a partial cover of
Σ on S if G is a partial superedge of CC(Σ) on S.

When S is autonomous, testing whether a set of FDs is a partial cover on S is easy:

Lemma 3.30. Let S ⊆ Σ∗a be autonomous, and let Σ′ ⊆ Σ∗a be an atomic cover of Σ.
Then a set G ⊆ S is a partial cover on S iff G ∪ (Σ′ \ S) is a cover of Σ.

Proof. Follows directly from Lemma 3.23.

65

Clearly G∪ (Σ′ \S) is a cover of Σ iff G∪ (Σ′ \S) ² Σ′∩S, which allows us to perform
this test quickly.

We will identify some autonomous (but not necessarily minimal) sets of CC(Σ). The-
orem 3.18 relates autonomous sets to the minimal transversals of CC(Σ). The following
lemmas establish some results about the form of these minimal transversals.

Lemma 3.31. Let S ⊆ Σ∗a be a minimal transversal of CC(Σ) and X → A ∈ S. Then
S = Σ∗a \ S is not a cover of Σ, but S ∪ {X → A} is.

Proof. By Lemma 3.28, S is not a cover of Σ since it does not intersect with S. If
S ∪ {X → A} were not a cover, then every cover would contain a FD in

S ∪ {X → A} = S \ {X → A}
Thus S \ {X → A} would be a transversal, which contradicts the minimality of S.

Definition 3.32. The sets of attributes X and Y are equivalent under a set of FDs Σ,
written X ↔ Y , if X → Y and Y → X lie in Σ∗.

Lemma 3.33. Let X → A, Y → B be contained in a common minimal transversal
S ⊆ Σ∗a of CC(Σ). Then X and Y are equivalent under S = Σ∗a \ S.

Proof. By Lemma 3.31 we have

S 2 Y → B
S ∪ {X → A} ² Y → B

(3.1)

Let us denote the closure of Y under S by Y ∗S. If X * Y ∗S then

Y ∗S = Y ∗S∪{X→A}

which contradicts (3.1). Thus S ² Y → X, and by symmetry S ² X → Y .

Definition 3.34. Let Σ be a set of FDs on R. We denote the set of FDs in Σ∗a with LHS
equivalent to X ⊆ R as

EQX := {Y → Z ∈ Σ∗a | Y ↔ X}
The partition of Σ∗a into non-empty equivalence sets is denoted as

EQ := {EQX | ∃Y.X → Y ∈ Σ∗a}
Theorem 3.35. Let Σ be a set of FDs on R. Then every set EQX ∈ EQ is autonomous.

Proof. By Lemma 3.33 all FDs in a (maximal) connected component of Tr(CC(Σ)) have
equivalent LHSs under Σ. Thus EQX is the union of vertex sets of maximal connected
components of Tr(CC(Σ)), and therefore an isolated set of Tr(CC(Σ)). By Theorem
3.18 isolated sets of Tr(CC(Σ)) are autonomous for CC(Σ).

We are now ready to prove our main theorem for this section.

Theorem 3.36. Let Σ be a set of FDs on R. A set G ⊆ Σ∗a is a cover of Σ iff G∩EQX

is a partial cover of Σ on EQX for every EQX ∈ EQ.

66

Proof. By Theorem 3.35 the sets EQX form a partition of Σ∗a into autonomous sets, so
the theorem is a special case of Lemma 3.22.

Theorem 3.36 allows us to split the task of finding and representing all canonical
covers of Σ into several smaller tasks. For every EQX ∈ EQ we find the set CX of
all non-redundant partial covers on EQX . By Theorem 3.10 these describe CC(Σ) in
decomposed form:

CC(Σ) = CX1 ∨ . . . ∨ CXn

While we could easily compute CC(Σ) by taking their cross-union, this decomposed de-
scription of CC(Σ) is usually much smaller, and thus better suited for most tasks.

Note that the equivalence classes EQX need not be minimal autonomous sets of
CC(Σ). If we could find smaller autonomous sets we could speed up the computation
of CC(Σ) even more. However, we will show later (Theorem 3.81) that finding the min-
imal autonomous sets of CC(Σ) is hard. In section 3.4 we will give an algorithm to find
finer, but not necessarily minimal autonomous sets.

3.2.2 Relative Covers

Partial covers on a set S of atomic FDs are obtained by taking an atomic cover and
intersecting it with S. A different concept which will become useful is that of relative
covers, which can be obtained through ’relativation’ of covers onto sets of attributes.

Definition 3.37. Let Σ be a set of FDs on R, and ΣH be a set of FDs on H ⊆ R, H :=
R \H. We call ΣH a relative cover of Σ on H if for all X,Y ⊆ H we have

ΣH ² X → Y ⇔ Σ ² X ∪H → Y

Relative covers have been used previously by Saiedian and Spencer in [39] under the
name contraction.

Definition 3.38. The relativation of a FD X → Y onto an attribute set H is

X → Y]H[:= X ∩H → Y ∩H

The relativation of a set Σ of FDs onto H is

Σ]H[:= {X → Y]H[| X → Y ∈ Σ}

Note that we do allow FDs with empty LHS. They arise naturally when relativating
sets of FDs with non-empty LHSs.

We will show that relative covers can be constructed through relativation.

Lemma 3.39. Let ΣH be a relative cover of Σ on H. Then

Σ∗
H = Σ∗]H[

Proof. By definition we have

Σ∗]H[= {X ∩H → Y ∩H | X → Y ∈ Σ∗}

67

Thus for any X,Y ⊆ H we get

X → Y ∈ Σ∗]H[⇔ ∃X ′ ⊆ H with X ∪X ′ → Y ∈ Σ∗

⇔ X ∪H → Y ∈ Σ∗

⇔ X → Y ∈ Σ∗
H

The last correspondence holds since ΣH is a relative cover.

Lemma 3.40. Let Σ be a set of FDs on R and H ⊆ R.

(a) If Σ ² X → Y then Σ]H[² X ∩H → Y ∩H

(b) If Σ]H[² X → Y then Σ ² X ∪H → Y

Proof. (a) If X → Y ∈ Σ then X ∩ H → Y ∩ H ∈ Σ]H[. Otherwise X → Y can be
derived from Σ using the Armstrong Axioms (1.1). We show that X ∩H → Y ∩H can
be derived from Σ]H[by induction on the length of the derivation tree used to derive
X → Y . This is straight forward:

derivation from Σ derivation from Σ]H[

X → Y
Y ⊆ X y

X ∩H → Y ∩H
Y ∩H ⊆ X ∩H

X → Y

XW → Y W
y

X ∩H → Y ∩H

XW ∩H → Y W ∩H

X → Y Y → Z

X → Z
y

X ∩H → Y ∩H Y ∩H → Z ∩H

X ∩H → Z ∩H

(b) If X → Y ∈ Σ]H[then Σ contains a FD X ∪X ′ → Y ∪Y ′ with X ′, Y ′ ⊆ H, which
implies X ∪H → Y . The remaining argument proceeds as for (a).

Lemma 3.41. Let Σ be a set of FDs on R and H ⊆ R. Then

Σ∗]H[= (Σ]H[)∗

Proof. We can show Σ∗]H[⊆ (Σ]H[)∗ as follows:

X ′ → Y ′ ∈ Σ∗]H[⇔ ∃X → Y ∈ Σ∗ with X ′ = X ∩H, Y ′ = Y ∩H
⇔ Σ ² X → Y

(Lemma 3.40a) ⇒ Σ]H[² X ∩H → Y ∩H
⇔ X ′ → Y ′ ∈ (Σ]H[)∗

The proof for (Σ]H[)∗ ⊆ Σ∗]H[is similar:

X → Y ∈ (Σ]H[)∗ ⇔ Σ]H[² X → Y
(Lemma 3.40b) ⇒ Σ ² X ∪H → Y

⇔ X ∪H → Y ∈ Σ∗

⇒ X → Y ∈ Σ∗]H[

68

Using lemmas 3.39 and 3.41 we get:

Theorem 3.42. Let Σ be a set of FDs on R and H ⊆ R. Then the relativation Σ]H[of
Σ is a relative cover of Σ on H.

Proof. Let ΣH be a relative cover of Σ on H. We need to show that Σ∗
H = (Σ]H[)∗. This

is clear by lemmas 3.39 and 3.41:

Σ∗
H = Σ∗]H[= (Σ]H[)∗

Note that a variant of Theorem 3.42 has been shown previously: It corresponds to
lemma 6 in [39]. Note further that the converse of Theorem 3.42 does not hold: not every
relative cover is the relativation of a cover.

Example 3.6. Consider the set of FDs

Σ = {AB → C,C → D, B → D}.
Its relativation onto H = BCD is a relative cover of Σ on H:

Σ]H[= {B → C, C → D,B → D}
The FD B → D is redundant in Σ]H[so that the set

ΣH := {B → C,C → D}
is also a relative cover of Σ on H. However, every cover of Σ contains B → D or B → BD,
so ΣH cannot be the relativation of a cover of Σ.

3.2.3 Implication Dependencies

In section 2.1.5 we have seen how minimal keys can be computed efficiently, and we noted
that the problem of finding canonical covers is similar. However, in the case of the key
finding problem, a set of FDs was used to describe determination between attribute sets,
whereas implication of FDs is given implicitly. To utilize our linear resolution algorithm,
we need to make implications explicit. This is done as follows.

Definition 3.43. Let Σ be a set of FDs. We call an expression of the form S ⇒ T where
S, T ⊆ Σ an implication dependency (ID).

An ID S ⇒ T is the equivalent of a FD S → T over Σ, where Σ is regarded as attribute
set (i.e., we regard the FDs in Σ as independent attributes without any connection). We
thus use the terminology defined for FDs for IDs as well, assuming an equivalent definition.
In particular, we say that a set Π of IDs implies an ID S ⇒ T iff S ⇒ T can be derived
from Π using the equivalent of the Armstrong axioms (with → replaced by ⇒).

Definition 3.44. Let Σ be a set of FDs. We call a set Π of IDs on Σ an implication cover
of Σ if for all sets S, T ⊆ Σ we have

S ⇒ T ∈ Π∗ iff S ² T

We call Π sound if S ⇒ T ∈ Π∗ implies S ² T , and complete for Σ if S ² T implies
S ⇒ T ∈ Π∗. Furthermore, we call ΠH a relative implication cover on H ⊆ Σ if for all
S, T ⊆ H we have

S ⇒ T ∈ Π∗
H iff S ∪ (Σ \H) ² T

69

Note that the relationship of implication covers and relative implication covers is the
same as for covers and relative covers: For any implication cover Π the condition

S ⇒ T ∈ Π∗
H iff S ∪ (Σ \H) ² T

is equivalent to

ΠH ² S ⇒ T iff Π ² S ∪ (Σ \H) ⇒ T

which resembles precisely Definition 3.37. In particular this gives us Theorem 3.42 for
implication covers:

Corollary 3.45. Let Σ be a set of FDs with implication cover Π and H ⊆ Σ. Then Π]H[
is a relative implication cover of Σ on H.

Let us now recall Lemma 3.21. For the hypergraph CC(Σ) it states the following:

Corollary 3.46. Let Σ be a set of FDs and H ⊆ Σ∗a. A set S ⊆ H is a partial cover on
H iff S ∪ (Σ∗a \H) is a cover of Σ.

The last condition of Corollary 3.46 is equivalent to S ∪ (Σ∗a \H) ² Σ∗a, and thus to

S ∪ (Σ∗a \H) ² H

Comparing this to Definition 3.44, we can rewrite the condition as

S ⇒ H ∈ Π∗
H

for any relative implication cover ΠH of Σ∗a on H. This characterizes S as a key of H
w.r.t. the set of IDs ΠH , giving us the following lemma.

Lemma 3.47. Let S ⊆ H ⊆ Σ∗a, and ΠH be a relative implication cover of Σ∗a on H.
Then S is a partial cover of Σ∗a on H iff S ⇒ H ∈ Π∗

H .

Proof. See above.

The last lemma allows us to find partial canonical covers as follows: We first find a
relative implication cover ΠH , then use linear resolution to find all minimal keys w.r.t.
ΠH , which are the partial canonical covers needed.

The next theorem allows us to compute a relative implication cover. To make the
soundness proof for a (relative) implication cover easier, we first show a simple lemma.

Lemma 3.48. A set Π of IDs on Σ is sound iff S ² T for all S ⇒ T ∈ Π. A set ΠH of
IDs on H ⊆ Σ is sound iff S ∪ (Σ \H) ² T for all S ⇒ T ∈ ΠH .

Proof. We only need to show that S ² T for all derived IDs S ⇒ T ∈ Π∗, and S∪(Σ\H) ²
T for IDs S ⇒ T ∈ Π∗

H . For each application of the armstrong axioms for IDs, it is easy
to see that soundness of the premises (i.e., S ² T or S∪ (Σ\H) ² T , respectively) implies
soundness of the derived IDs.

70

Theorem 3.49. Let Σ be a set of FDs, EQ the partition of Σ∗a into equivalence classes,
and H = EQX for some set EQX ∈ EQ. Construct ΠX as follows: For every pair of
(different) FDs Y → A ∈ H,Z → A ∈ Σ∗a with Σ ² Y → Z let ΠX contain the ID

{Y → Zi ∈ H | Zi ∈ Z} ∪ {Z → A} ⇒ Y → A (3.2)

provided Z → A ∈ H, or

{Y → Zi ∈ H | Zi ∈ Z} ⇒ Y → A (3.3)

otherwise. Then ΠX is a relative implication cover of Σ∗a on H.

Proof. We first show that ΠX is sound. By Lemma 3.48 it suffices to show that for every
ID in ΠX of the form (3.2) or (3.3) we have

{Y → Zi ∈ H | Zi ∈ Z} ∪ {Z → A} ∪ (Σ∗a \H) ² Y → A (3.4)

For every Zi ∈ Z \ Y there is a minimal Yi ⊂ Y such that Yi → Zi ∈ Σ∗a. If Yi 6= Y , then
Yi and Y are not equivalent, since Y is a minimal LHS. Thus Yi → Zi ∈ Σ∗a \H, so that
all Yi → Zi are contained in the LHS of (3.4). Clearly {Yi → Zi | Zi ∈ Z \ Y } ∪ {Z → A}
implies Y → A.

To prove that ΠX is complete, let S, T ⊆ H with S ∪ (Σ∗a \H) ² T . We need to show
that S ⇒ T ∈ Π∗

X . Assume the contrary, so that for U ′ := S ∪ (Σ∗a \ H) there exists a
FD Y ′ → A′ ∈ T (and thus Y ′ → A′ ∈ H) with (note that U ′ ∩H = S):

U ′ ² Y ′ → A′ and U ′ ∩H ⇒ Y ′ → A′ /∈ Π∗
X

Now let U ⊆ U ′ be minimal such that there exists a FD Y → A ∈ H for which

U ² Y → A and U ∩H ⇒ Y → A /∈ Π∗
X

Consider closure computation for Y under U : Since we have U ² Y → A there must be a
FD Z → A ∈ U such that UA := U \{Z → A} implies Y → Z. Equivalently UA ² Y → Zi

for all Zi ∈ Z. Since UA (U and U was chosen minimal, we get

UA ∩H ⇒ Y → Zi ∈ Π∗
X

for all Y → Zi ∈ H, Zi ∈ Z. Since UA ∩H ⊆ U ′ ∩H = S this gives us

S ⇒ {Y → Zi ∈ H | Zi ∈ Z} ∈ Π∗
X

If Z → A ∈ H then Z → A ∈ U ∩H ⊆ S, and since ΠX contains the ID (3.2) it follows
that

S ⇒ Y → A ∈ Π∗
X

which contradict our assumption. For Z → A /∈ H the same follows with the ID (3.3).

The size of the relative implication cover of EQX constructed is clearly polynomial
in the size of Σ∗a. We note that using Theorem 3.36 to split up the problem of finding
canonical covers into finding partial canonical covers for equivalence classes of FDs is
helpful in two ways. First it allow us to represent the set of all canonical covers in an
efficient manner. At the same time it simplifies the problem of finding implication covers
by allowing for small relative implication covers. As example 3.7 demonstrates, it can
happen that every implication cover of Σ∗a is exponential in the size of Σ∗a.

71

Example 3.7. Let X1 . . . X2n, Y1 . . . Yn, A be attributes and

X = X1 . . . X2n, X i = X \Xi, Y = Y1 . . . Yn, Y i = Y \ Yi

be attribute sets. Let further

Σ =

X1 → Y1, X2 → Y1,
X3 → Y2, X4 → Y2,

.
X2n−1 → Yn, X2n → Yn,

Y → A

and thus (note that X i ∪Xj = X for i 6= j)

Σ∗a = Σ ∪

X1Y 1 → A, X2Y 1 → A,
X3Y 2 → A, X4Y 2 → A,

.
X2n−1Y n → A, X2nY n → A,

X → A

Then every implication cover of Σ∗a contains (at least) the 2n atomic IDs

{Z1Y 1 → A,Z2 → Y2, Z
3 → Y3, . . . , Z

n → Yn} ⇒ X → A

where each Zi is replaced by X2i−1 or X2i. This is because the FDs in the LHSs do not
imply any other FD in Σ∗a \ {X → A}.

3.2.4 The Algorithm

We summarize the algorithm developed below.

Algorithm “divide and resolve”

INPUT: set of FDs Σ
OUTPUT: set of all partial canonical covers CCX for every equivalence class EQX

of Σ∗a

compute Σ∗a

partition Σ∗a into equivalence classes EQ
for each EQX ∈ EQ do

construct relative implication cover ΠX of EQX

CCX := {minimal keys of EQX w.r.t. ΠX}
end

The sets CCX are the partial canonical covers of Σ on EQX by Lemma 3.47, and
together they represent CC(Σ) as described in Theorem 3.36.

Note that the partition of Σ∗a into autonomous sets EQ might not be minimal. We will
see later in section 3.5 that deciding whether a set of FDs is autonomous for CC(Σ) is co-
NP-complete, even when given Σ∗a. However, given all minimal autonomous sets, testing
whether a set is autonomous can be done in polynomial time by Theorem 3.11. Thus,

72

unless P=NP, finding the minimal autonomous sets will not be possible in polynomial time.
We contented ourselves with the non-minimal partition EQ since it was easy to identify
and fast to compute. In section 3.4 we will discuss an efficient method for computing a
finer partition into autonomous sets, although these sets may not be minimal either.

If we want to find the minimal autonomous partition after the sets CCX have been
computed, e.g., to store CC(Σ) more efficiently, we can partition the hypergraphs CCX

further using the “Recursive Autonomous Partitioning” algorithm from section 3.1.
The following example calculation illustrates the algorithm “divide and resolve”.

Example 3.8. Our goal is to compute all canonical covers for the set of FDs

Σ = {AB → C, AC → B, AD → C, AE → C, BE → A}

We start by computing the atomic closure Σ∗a of Σ

Σ∗a = Σ ∪ {AE → B,AD → B,BE → C}

and partitioning Σ∗a into equivalence classes EQ = {EQAB, EQAD, EQAE} with

EQAB = {AB → C,AC → B}
EQAD = {AD → C,AD → B}
EQAE = {AE → B, AE → C, BE → A,BE → C}

We then construct the relative implication cover for each equivalence class:

ΠAB = ∅
ΠAD =

{ {AD → B} ⇒ {AD → C},
{AD → C} ⇒ {AD → B}

}

ΠAE =

{AE → B} ⇒ {AE → C},
{AE → B, BE → C} ⇒ {AE → C},

{AE → C} ⇒ {AE → B},
{BE → A,AE → C} ⇒ {BE → C},

{BE → A} ⇒ {BE → C}

The partial canonical covers can now be computed as minimal keys w.r.t. the relative
implication covers:

CCAB = {{AB → C,AC → B}}
CCAD = {{AD → B}, {AD → C}}
CCAE = {{AE → B,BE → A}, {AE → C,BE → A}}

Together this gives us all four canonical covers in

CC(Σ) = CCAB ∨ CCAD ∨ CCAE

=

{AB → C, AC → B, AD → B,AE → B, BE → A},
{AB → C, AC → B, AD → B,AE → C, BE → A},
{AB → C, AC → B, AD → C,AE → B,BE → A},
{AB → C, AC → B, AD → C,AE → C,BE → A}

73

3.2.5 Improvements and Complexity Analysis

When using linear resolution to find CCX , the most time consuming step of eliminating
extraneous attributes from the LHS of an ID is actually that of eliminating redundant
FDs from a partial atomic cover on EQX . When minimizing the LHS of a FD, we remove
one attribute A at a time. We then check whether A is still determined by the remaining
attributes by computing their closure, using the FDs in Σ. The corresponding approach
for an ID L ⇒ EQX would be to remove one FD Y → A from its LHS L, and compute
the closure of the remaining FDs L \ {Y → A} w.r.t. the relative implication cover ΠX .

However, since ΠX can be large compared to Σ, it is usually more efficient to check
whether L \ {Y → A} is still a partial cover using Lemma 3.30. Since we know that L is
a partial cover, we only need to check whether Y → A is implied by

(L \ {Y → A}) ∪ (Σ \ EQX)

This gives us the following simple procedure:

proc minimize-partial-cover(L, EQX , Σ)
for all Y → A ∈ L do

L′ := (L \ {Y → A}) ∪ (Σ \ EQX)
Y ∗L′ := closure of Y w.r.t. L′
if A ∈ Y ∗L′ then
L := L \ {Y → A}

end

To establish an upper bound for the complexity of the “divide and resolve” approach,
we use the variables

f = |Σ∗a|, n = |Σ|, k = |R|
as defined earlier, as well as

c = max {|CCX | | EQX ∈ EQ}

i.e., c is the maximum number of partial canonical covers over all EQX .
Computing Σ∗a can be done in O(f · k2n2). Partitioning Σ∗a can be done in O(f · kn)

by computing the closure of each LHS. Constructing all ΠX takes O(f 2 · k2) using the
closures computed before. Computing the sets CCX by linear resolution without the
optimization described above would lead to a complexity of O(c · f 6), using that |ΠX | is
bounded by f 2. Using the partial cover test instead leads to a worst-time complexity of
O(c ·f 4 ·k), which can be argued as follows: The number of LHS minimizations is bounded
by c ·∑ |ΠX | ≤ c · f 2, and each minimization requires at most f redundancy tests. Each
redundancy test requires one closure computation relative to a subset of Σ∗a, which can
be performed in O(f · k). The overall computation time is therefore bounded by the term

O(c · f 4 · k + f · k2n2 + f 2 · k2)

If we assume that n, k are bounded by f , which holds in all but some “lucky” cases
(”lucky” because this means f is very small indeed), this can be simplified to

O(c · f 4 · k)

74

3.2.6 LR-reduced Covers

The general purpose of finding all canonical covers is to find covers which are best in some
sense. This approach only works if we can be sure that the best cover (or at least one of
the best if there are multiple optimal solutions) for a given problem is canonical. This is
often the case, but not always. Another common type of cover are LR-reduced covers.

Definition 3.50. A set Σ of FDs is called LR-reduced if no attribute can be removed
from any FD in Σ while maintaining the property of being a cover.

While we only computed the set CC(Σ) of all canonical covers, the set of all LR-
reduced covers can be constructed from CC(Σ) easily. By “splitting” a FD X → Y into
singular FDs, we mean to replace it by {X → A | A ∈ Y }.
Lemma 3.51. [32] Splitting FDs into singular FDs turns an LR-reduced cover into a
canonical cover. Combining FDs with identical LHSs turns a canonical cover into an
LR-reduced cover.

As an example for the usefulness of LR-reduced covers, one may consider the problem
of finding a cover with minimal number of attributes, which is known to be NP-hard [32].

Definition 3.52. The area of a FD X → Y is |X| + |Y |, i.e., the number of attributes
appearing in X → Y . The area of a set of FDs Σ is the sum of the areas of all FDs in Σ.

Definition 3.53. A set Σ of FDs is called area optimal if there exists no cover G of Σ
with smaller area.

Area optimal covers can help in reducing the workload for checking whether depen-
dencies hold on a relation, as well as speed up various algorithms [32].

Area optimal covers are rarely canonical, since combining FDs with equal LHS reduced
the area. It is easy to see though that they are always LR-reduced.

Lemma 3.54. [32] An area optimal set of FDs is LR-reduced.

Thus, we may combine FDs with identical LHSs to obtain all LR-reduced covers in
which no FDs have identical LHSs. Clearly those include all area optimal covers. We
may determine all area optimal partial covers for each EQX separately to get a concise
representation for all area optimal covers.

In [4] Ausiello, D’Atri and Sacca introduce several similar minimality criteria for covers,
and show that some of the corresponding decision problems are NP-hard. While these
minimal covers are not always canonical or LR-reduced, it is easy to see that some of
them always are. Thus, while our approach may not find all minimal covers (w.r.t. the
minimality criteria in [4]), we can always find some. In particular, optimal covers are
always minimal w.r.t. the criteria from [4].

3.2.7 Related Work

Maier already noted in [32] that there is a correspondence between the equivalence classes
of non-redundant covers. Our work generalizes these results by investigating the projec-
tions of (canonical) covers onto arbitrary autonomous sets, and placing them into a more
general theoretic framework.

75

A unique representation for a set of unitary FDs is given in [26]. This representation
is obtained by factoring the attribute determination graph via the equivalence relation on
attributes induced by Σ. From this, partial canonical covers for the equivalence classes
could be constructed as minimal strongly connected directed graphs.

In [28] the authors describe a unique representation for a set of functional dependencies,
which is independent of the choice of cover.

Ausiello, D’Atri and Sacca introduce a graph representation to describe sets of FDs in
[3], and use hypergraphs for describing them in [4]. However, their approach is completely
different from ours, as their vertices are attributes or attribute sets, while each FD is
modeled as a (hyper)edge.

3.3 Size and Number of Non-redundant Covers

In this section we establish some results concerning how much the number of FDs in two
non-redundant covers can differ, and how many non-redundant covers a set of FDs can
have.

Theorem 3.55. Let Σ, G be equivalent non-redundant sets of FDs over R. Then |G| ≤
|Σ| · |R|.

Proof. Since Σ and G are equivalent, every FD X → A in Σ is implied by G. When
computing the closure of X using G, we only use FDs which contribute at least one new
attribute. Thus G includes a subset GX ⊆ G of cardinality at most |R \X| which implies
X → A. Since their union

⋃
X→A∈F

GX ⊆ G is already a cover of Σ and G is non-redundant,
⋃

X→A∈Σ

GX = G. Clearly the cardinality of
⋃

X→A∈Σ

GX is bounded by |Σ| · |R|.

In [19] Gottlob shows the bound |G| ≤ |Σ| · (|R| − 1) for FDs with non-empty LHSs,
and gives the following example to show that the bound is tight.

Example 3.9. Let R = {A,B1, . . . , Bn} and Σ = {A → B1 . . . Bn}. Then

G = {A → B1, . . . , A → Bn}

is a non-redundant cover of Σ, and |G| = n = |Σ| · (|R| − 1).

While the example above was based on splitting non-singular FDs into singular ones,
the next example shows that the bound of Theorem 3.55 cannot be improved significantly
even if we restrict ourselves to canonical covers. Note though that |Σ| = |G| if we restrict
ourselves to non-redundant covers with FDs of the form X → X∗, since these are actually
minimal covers [40].

Example 3.10. Consider the relation schema R = {A1, . . . , An, B1, . . . , Bn, C} with 2n+1
attributes. Associate with R the canonical set of FDs

Σ =

A1 → C, . . . , An → C,
C → B1, . . . , C → Bn,
B1 . . . Bn → C

76

of size 2n + 1. The set

G =

A1 → B1, . . . , An → B1,
...
A1 → Bn, . . . , An → Bn,
C → B1, . . . , C → Bn,
B1 . . . Bn → C

is a canonical cover of Σ and contains n2 + n + 1 FDs. Thus |G| > 1
4
· |Σ| · |R|.

Using the bound established in Theorem 3.55, we will argue why it can make sense to
try and compute all canonical covers.

We first note that the number of arbitrary covers for a set Σ of FDs over a schema R
can be (and usually is) hyper-exponential in the number of attributes. This is the case
since the number of FDs in Σ∗ can be exponential in the number of attributes, and the
number of covers can be exponential in the number of FDs in Σ∗. Even by restricting
ourselves to the “most powerful” FDs of the form X → X∗ (with minimal LHS X) and
requiring covers to be non-redundant (which together with the restriction on the form of
FDs makes them minimal), we cannot avoid this. For brevity, we shall call non-redundant
sets of LHS-reduced FDs of the form X → X∗ full.

Example 3.11. Consider R = {A1, . . . , A2n} and let Σ consist of all FDs X → R,X ⊆ R
with |X| = n. Clearly Σ is non-redundant and contains

(
2n
n

)
FDs. However, Σ has no

full covers (other than itself). To create a large number of full covers, we add two extra
attributes A and B to R, which gives us R′ = R ∪ {A,B}, and change Σ to

Σ′ = {AX → R′ | X → R ∈ Σ} ∪ {A → B,B → A}.
It is easy to check that Σ′ is full. However, each FD AX → R′ can be replaced by
BX → R′, and these replacements can be done independently from one another. Thus Σ

has at least 2(2n
n) full covers.

We are thus trying to compute a potentially hyper-exponential number of covers, which
at first glance seems rather infeasible even for small cases. However, when constructing
the example above, we used a set of FDs Σ whose size is exponential in the number of
attributes. This is rather unusual, and for small sets Σ we can establish better bounds
for the number of non-redundant covers.

Theorem 3.56. Let Σ be a set of FDs over R, with cardinalities |Σ| = n|, |R| = k. The

number of non-redundant covers of Σ is at most
(
22k

nk

)
< 22nk2

.

Proof. The number of FDs on R is 22k, and any non-redundant cover of Σ contains at
most nk FDs by Theorem 3.55.

While the bound given can be improved, the relevant fact is that the number of covers
is “only” exponential in the size of the input, rather than hyper-exponential. When con-
sidering arbitrary non-redundant covers, we can obtain different non-redundant covers by
changing FDs slightly, e.g. by adding LHS attributes to the RHS. As such changes can
be done independently from one another, the number of non-redundant covers is practi-
cally always exponential. Many of those variations are avoided by restricting ourselves to
canonical covers. Using partial covers to represent them efficiently, we can hope to reduce
the size of our representation to a reasonably small number. Experimental results can be
found in the appendix.

77

3.4 Partial Implication Cycles

We wish to find a partition of Σ∗a into autonomous sets which is finer than EQ. This is
motivated by the observation that schemas with multiple minimal keys can easily have
a large number of canonical covers, which cannot be represented efficiently using the
partition EQ. Autonomous sets of a finer partitions have a smaller number of partial
covers on them.

Example 3.12. Consider the set

Σ = {A → BC1 . . . Cn, B → A}

with the atomic closure

Σ∗a =

{
A → B,A → C1, . . . , A → Cn,
B → A,B → C1, . . . , B → Cn

}
.

Each canonical cover of Σ contains A → B,B → A and for each i = 1 . . . n either A → Ci

or B → Ci, for a total of 2n canonical covers. The LHSs A and B are equivalent, so the
partition EQ = {Σ∗a} is trivial. However, CC(Σ) can be represented efficiently using a
finer decomposition:

CC(Σ) = {{A → B,B → A}}∨
{{A → C1}, {B → C1}}∨
. . .
{{A → Cn}, {B → Cn}}

The example above is not a rare case - one can expect to frequently find schemas
with multiple minimal keys in practice. It is thus vital to find a good partition for cases
similar to the last example. For this, we use the same idea as in section 2.2.3. We define
adjacency of FDs in Σ∗a w.r.t. the hypergraph Tr(CC(Σ)).

Definition 3.57. We call FDs adjacent iff they lie in a common minimal transversal.

Note that by Lemma 3.31 adjacent FDs can be used to derive each other, i.e., each
lies in a minimal subset of Σ∗a which implies the other FD. If we represent the relation
between FDs “partially implies” by a directed graph, we find that adjacent FDs lie on a
directed cycle.

Definition 3.58. Let X → A, Y → B ∈ Σ∗a. We say that X → A partially implies
Y → B, written X → A

p⇒ Y → B if X → A lies in a minimal S ⊆ Σ∗a with S ² Y → B.
We denote the relation “partially implies” by PIΣ ⊆ Σ∗a × Σ∗a.

Lemma 3.59. Let X → A, Y → B ∈ Σ∗a be adjacent. Then X → A and Y → B partially
imply each other.

Proof. Follows from Lemma 3.31.

Since relations can be regarded as directed graphs, we use terminology from graph
theory. The last lemma then tells us that adjacent FDs lie on a directed cycle of PIΣ.
This gives us the following.

78

Theorem 3.60. The maximal strongly connected components (MSCs) of PIΣ are au-
tonomous sets of CC(Σ).

Proof. Let S ⊆ Σ∗a be (the vertex set of) a MSC of PIΣ. By Lemma 3.59 every minimal
transversal that intersects with S lies fully in S. Thus S is the union of maximal connected
components of Tr(CC(Σ)), which are minimal autonomous sets of CC(Σ) by Theorem
3.18. This makes S autonomous by Theorem 3.11.

Theorem 3.60 provides us with an alternative proof for Theorem 3.35: By Lemma
2.35 the partial implication graph PIΣ contains only arcs where the LHS of the target FD
determines the LHS of the source FD. Thus there are no cycles between FDs in different
equivalence classes, which means that every equivalence class is the union of MSCs of
PIΣ.

The partition of Σ∗a formed by the MSCs of PIΣ is at least as fine as the one by
equivalence classes and often finer (example 3.12), but it need not be minimal. This is
because PIΣ contains “extra” arcs between non-adjacent FDs, which can lead to larger
MSCs. Extra arcs can make the partition found less fine, but it is still a partition into
autonomous sets.

Example 3.13. Consider the set of FDs

Σ∗a =

{
A → B, C → D, BD → A,BD → C,
E → A,E → B,E → C,E → D

}

The subgraph of PIΣ induced by the equivalence class

EQE = {E → A,E → B, E → C, E → D}

can be drawn as
(E → A) ← (E → D)

↑↓ ↑↓
(E → B) → (E → C)

so EQE is a MSC of PIΣ. However, the sets {E → A,E → B} and {E → C,E → D}
are smaller autonomous sets:

CC(Σ) = {{A → B, C → D,BD → A,BD → C}}∨
{{E → A}, {E → B}}∨
{{E → C}, {E → D}}

We still have the problem of constructing PIΣ. We will solve it with the help of
implication covers.

Definition 3.61. Let Σ be a set of FDs. The atomic implication closure AIC(Σ) of Σ is
the atomic closure of any implication cover of Σ:

AIC(Σ) :=

{
S ⇒ {Y → B}

∣∣∣∣
S ⊆ Σ∗a, Y → B ∈ Σ∗a \ S,
S minimal with S ² Y → B

}

This allows us to describe partial implication w.r.t. AIC(Σ).

79

Definition 3.62. We say that X → A partially implies Y → B w.r.t. some set of
implication dependencies Π iff Π contains an ID with X → A in its left-, and Y → B in
its right hand side.

With this definition we get:

Proposition 3.63. Let Σ be a set of FDs, and X → A, Y → B ∈ Σ∗a. Then X → A
partially implies Y → B iff X → A partially implies Y → B w.r.t. AIC(Σ).

This means that partial implication is the same as partial determination, as defined
in section 2.2.3, but for AIC(Σ). That is, we have

PIΣ = RAIC(Σ)

Since we are only interested in the MSCs of PIΣ, we may as well use its transitive
closure PI+

Σ instead, or any other relation with PI+
Σ as its transitive closure. By Theorem

2.30 such a relation can be constructed using any atomic implication cover of Σ.
We have seen earlier that implication covers of Σ can be large, even if Σ∗a is small.

On the other hand, the size of relative implication covers of equivalence classes EQX of
Σ∗a is at most quadratic in Σ∗a. We thus want to use relative implication covers instead,
which we can construct easily using Theorem 3.49.

Lemma 3.64. Let H ⊆ Σ∗a. Then the partial implication graph w.r.t. the relativation of
the atomic implication closure AIC(Σ)]H[is the subgraph of PIΣ induced by H.

Proof. PIΣ is the partial implication graph w.r.t. AIC(Σ) by Lemma 3.63. Relativating
AIC(Σ) onto H removes the FDs not in H, and thus removes from PIΣ the arcs adjacent
to FDs not in H. Clearly the result is the subgraph of PIΣ induced by H.

Example 3.14. Consider the set of FDs

Σ∗a = {A → B, A → C, B → C, C → B}
The atomic implication closure of Σ is

AIC(Σ) =

{ {A → B,B → C} ⇒ {A → C},
{A → C,C → B} ⇒ {A → B}

}

This gives us the partial implication graph PIΣ:

(A → B) ← (C → B)
↑↓

(A → C) ← (B → C)

Relativating AIC(Σ) onto the set H = {A → B, A → C} gives us

AIC(Σ)]H[=

{ {A → B} ⇒ {A → C},
{A → C} ⇒ {A → B}

}

which induces the partial implication graph w.r.t. AIC(Σ)]H[:

(A → B)
↑↓

(A → C)

which is also the subgraph of PIΣ induced by H.

80

Theorem 3.65. Let H ⊆ Σ∗a and ΠH an atomic relative implication cover of Σ∗a on H.
Let further PIH be the partial implication graph of H w.r.t. ΠH . Then the MSCs of PIH

are subsets of the MSCs of PIΣ.

Proof. Let PIΣ[H] be the subgraph of PIΣ induced by H. The MSCs of PIΣ[H] are
clearly subsets of the MSCs of PIΣ, and we will show that they include the MSCs of PIH .

By Lemma 3.64 PIΣ[H] is the partial implication graph w.r.t. AIC(Σ)]H[. Since
AIC(Σ) is an implication cover of Σ∗a, AIC(Σ)]H[is a relative implication cover of Σ∗a on
H by Corollary 3.45. Note that AIC(Σ)]H[need not be atomic, as the relativation of an
atomic ID need not be atomic anymore (w.r.t. the relativated implication cover). It could
however be transformed into an atomic relative implication cover Π′

H by removing IDs with
empty right hand side, and LHS-minimizing the remaining IDs. For the corresponding
partial implication graph PI ′H w.r.t. Π′

H this means that some arcs got removed, but no
new arcs are added, so the MSCs of PI ′H are subsets of the MSCs of PIΣ[H].

PI ′H and PIH are both atomic relative (implication) covers on the same set H, so
by Lemma 3.39 they are atomic covers of each other. Thus their MSCs are identical by
Theorem 2.30.

Theorem 3.65 allows us to use atomic relative implication covers to find a partition
which is at least as fine and possibly finer than the partition into autonomous sets induced
by PIΣ. We will show next that the sets in this finer partition are still autonomous, so that
the use of relative implication covers not only makes the construction of an autonomous
partition faster, but also leads to a better (i.e., finer) partition.

Theorem 3.66. Let H ⊆ Σ∗a be an autonomous set, and ΠH a relative implication cover
on H. Let further PIH be the partial implication graph w.r.t. ΠH . Then the MSCs of
PIH are autonomous sets.

Proof. We may assume ΠH to be atomic, as making it atomic does not add arcs to PIH

and thus may only lead to a finer partition. By Theorem 2.30 we may then assume ΠH

to be its atomic closure, since this does not affect the MSCs of PIH .

We only show Lemma 3.59 for partial implication w.r.t. PIH , the argument then
continues as in Theorem 3.60. So let X → A, Y → B ∈ H be adjacent. Then there exists
some minimal transversal S with X → A, Y → B ∈ S, and by Lemma 3.31 we have

(Σ∗a \ S) ∪ {X → A} ² Y → B

Thus U ⇒ {Y → B} ∈ ΠH for some minimal U ⊆ (Σ∗a \ S) ∪ {X → A}, and since
X → A ∈ U by Lemma 3.31, X → A partially determines Y → B w.r.t. ΠH .

We summarize the steps needed to compute a partition of Σ∗a into autonomous sets
below.

Algorithm “partial implication partitioning”

INPUT: set of FDs Σ
OUTPUT: partition of Σ∗a into autonomous sets

81

compute Σ∗a and partition it into equivalence classes EQ
for each EQX ∈ EQ do

construct relative implication cover ΠX of EQX

make ΠX atomic
construct PIX from ΠX

compute MSCs of PIX

end

Note again that the MSCs of a directed graph can be computed in linear time [41].
If PIX is not strongly connected, we can try to partition its MSCs msc1, . . . , mscn

again, using a relative implication cover on each msci, which by Theorem 3.42 can easily
be obtained by relativating ΠX onto msci. This can be repeated until no finer partition
is found.

Instead of using partial implication cycles to find autonomous sets of CC(Σ), we can
use partial determination cycles to find autonomous sets of the hypergraph of all minimal
keys:

H = {X ⊆ R | X is a minimal key of R}
For this we start we the trivial autonomous set R, and use Σ instead of an implication
cover.

Saiedian and Spencer describe a similar approach in [39]. Using their algorithm for
computing all partial canonical covers as the minimal keys w.r.t. ΠX is equivalent to
determining smaller autonomous sets through partial implication cycles first, and then
using some other algorithm (e.g. [31]) to find the minimal keys on them.

In [20] Gottlob, Pichler and Wei also use partial determination cycles to identify
autonomous sets of H. This simplifies the test whether an attribute A ∈ R is prime
w.r.t Σ, since one only needs to check whether it is prime w.r.t. Σ]S[, where S is the
autonomous set containing A.

3.5 Essential FDs

We are now interested in FDs that appear in some (or all) canonical covers.

Definition 3.67. We call an atomic FD X → A ∈ Σ∗a

forced
essential
inessential

 iff it appears in

every
some
no

 canonical cover of Σ.

Note that essential FDs correspond to prime attributes, and that a FD is essential iff
it lies in some minimal transversal.

It would be desirable if we could compute all essential FDs without computing inessen-
tial ones as well. This would allow us to speed up computations of all or specific (e.g.
uncritical) canonical covers if the number of inessential FDs is large, as e.g. in example
2.12, where we had

Σ = {A1 → B1, . . . , An → Bn, B1 . . . Bn → C}

82

This leads to two different problems: “How can we decide whether a FD is essential?”
and “How can we avoid computing inessential ones?”. In the following we will develop
some answers to these questions.

3.5.1 Deriving essential FDs

As with adjacency, we define the neighborhood of FDs in Σ∗a w.r.t. the hypergraph
Tr(CC(Σ)).

Definition 3.68. For G ⊆ Σ∗a we define the neighborhood N(G) of G as

N(G) := {X → A ∈ Σ∗a | ∃Y → B ∈ G.X → A adjacent to Y → B}
In section 3.2.1 we already established some results about the minimal transversals of

CC(Σ). We will now show that they are cartesian products of LHSs and RHSs. In this,
we use the following definition.

Definition 3.69. We call a set Σ of FDs cartesian if

X → A, Y → B ∈ Σ ⇒ X → B ∈ Σ

In the following, transversal will always mean transversal of CC(Σ).

Theorem 3.70. All minimal transversals are cartesian.

Proof. Let X → A, Y → B be contained in a common minimal transversal S ⊂ Σ∗a. Since
X ↔ Y under S = Σ∗a \ S by Lemma 3.33 we have X → B ∈ Σ∗. Furthermore X → B
is non-trivial since S 2 Y → B, which means there exists UX ⊂ X with UX → B ∈ Σ∗a.
Assume UX → B /∈ S. Then S ² Y → X, UX → B and therefore S ² Y → B, which
contradicts that S is a minimal transversal. Thus UX → B ∈ S. Again by Lemma 3.33
we have UX ↔ X. Since X is a minimal LHS, this is only possible if UX = X.

Definition 3.71. We denote the essential closure of Σ by

Σ∗e := {X → A ∈ Σ∗a | X → A is essential}
We call a set G ⊆ Σ∗a essentially cartesian (w.r.t. Σ) iff

X → A, Y → B ∈ G, X → B ∈ Σ∗e ⇒ X → B ∈ G

The essentially cartesian closure G∗ec of G ⊆ Σ∗a is the smallest essentially cartesian
superset of G:

G∗ec := G ∪ {X → B ∈ Σ∗e | ∃X → A, Y → B ∈ G}
Definition 3.72. Let G,H ⊆ Σ∗a. We say that G dominates H if every minimal transver-
sal which intersects with H intersects with G as well1. An atomic FD X → A dominates
(is dominated) iff {X → A} dominates (is dominated). If two FDs dominate each other,
we call them equally dominating.

1The property defined is more closely related to the vertex covering property than to the dominating
set property. However, as the term ”covers” already has a distinct meaning for sets of FDs, we use
”dominates” to avoid confusion.

83

Lemma 3.73. Let G,H ⊆ Σ∗a. If G ² H then G ∩N(H) dominates H.

Proof. As only FDs in N(H) can contribute to dominating H, it suffices to show that G
dominates H. Assume the contrary, and let S be a minimal transversal containing a FD
X → A ∈ H which does not intersect with G. As G ² X → A this contradicts Lemma
3.31.

Lemma 3.74. Let X → A, Y → A ∈ Σ∗e be essential. Then X → A dominates Y → A
iff Σ∗a \N(Y → A) ² Y → X.

Proof. If X → A dominates Y → A then Σ∗a \ N(Y → A) ∪ {X → A} intersects with
every minimal transversal and thus is a cover of Σ. Argue as in Lemma 3.33.

On the other hand, let Σ∗a \N(Y → A) ² Y → X. Then Σ∗a \N(Y → A)∪{X → A}
implies Y → A and X → A dominates Y → A by Lemma 3.73.

When using linear resolution to compute the atomic closure, we would like to avoid
intermediate inessential FDs, just as we avoided intermediate non-atomic ones by mini-
mizing LHSs. This is possible, provided we can recognize inessential FDs.

Theorem 3.75. Let Σ be essentially cartesian. Then every (essential) FD X → A ∈ Σ∗a

can be obtained from Σ by linear resolution (with LHS-minimization of derived FDs) using
only base FDs which dominate X → A. The choices for LHS-minimization2 are irrelevant.

Proof. Trivial if X → A ∈ Σ or X → A inessential. Otherwise let M ⊆ Σ be of minimal
cardinality with M ² X → A, and let X1 → A1, . . . , Xn → A ∈ M be the FDs in M
in the order as they are used in computing the closure of X. Then there exists a linear
resolution tree with LHS-minimized intermediate FDs - note that we make no assumption
about which LHS-minimization is chosen - which uses only FDs in M \ {Xn → A} as
substituting FDs in (1). Let Y → A ∈ Σ∗a be any (intermediate) base FD used in the
resolution. We need to show that Y → A dominates X → A. We have

T := {Y → A} ∪M \ {Xn → A} ² X → A

and thus T ∩N(X → A) dominates X → A by Lemma 3.73.
Assume X → A were adjacent to Xi → Ai ∈ M \ {Xn → A}. Then Xi → A ∈ Σ∗e

by Theorem 3.70, and thus Xi → A ∈ Σ since Σ is essentially cartesian. Since X1 →
A1, . . . , Xi−1 → Ai−1 imply X → Xi, the set M ′ := {X1 → A1, . . . , Xi−1 → Ai−1, Xi →
A} ⊆ Σ implies X → A and is of smaller cardinality then M . Thus X → A is not adjacent
to any FD in M \ {Xn → A}, which means T ∩N(X → A) = {Y → A}.

Definition 3.76. We call an essential FD essentially derivable from Σ, iff it can be derived
from Σ using linear resolution (with LHS-minimization) without intermediate inessential
FDs.

Corollary 3.77. Let Σ be essentially cartesian. Then all essential FDs in Σ∗e are essen-
tially derivable from Σ.

Proof. Every FD that dominates an essential FD is essential itself.

2E.g. it might be possible to LHS-minimize AB → C to A → C or B → C.

84

We may thus discard any inessential FD we obtain during the linear resolution process.
The prerequisite that Σ be essentially cartesian can easily be met by computing the
essential cartesian closure of a canonical cover of Σ (or, if testing essential is too hard,
adding all atomic FDs X → B with X → A, Y → B ∈ Σ).

Furthermore, Theorem 3.75 assures us that the base FDs used in the linear resolution
process all dominate the final FD X → A. Thus they are all pairwise adjacent, and
we only need to consider derivations in which base and derived FD are adjacent (after
LHS-minimization).

It is of interest to know whether the requirement in Theorem 3.75 that Σ be essentially
cartesian is really necessary. The following example show that it is.

Example 3.15. Consider the canonical cover

Σ = {B → A,CD → B,DE → C,AE → C}
It is easily checked that DE → A ∈ Σ∗a is essential:

Σ′ = {B → A,CD → B,DE → A,AE → C}
forms a canonical cover of Σ. The only linear derivation tree which derives DE → A from
Σ is

DE → C CD→B B→A
CD→A

DE → A
The FDs CD → B,B → A are forced, as they are not implied by the remaining FDs in

Σ∗a =

{
B → A,CD → B, DE → C, AE → C,
CD → A,DE → B, BE → C, DE → A

}

This shows that CD → A is inessential, as it is implied by a set of forced FDs3. Thus we
cannot derive DE → A without intermediate inessential FDs.

In the example above, the essential FD DE → A was contained in the essentially
cartesian closure of Σ. To show that this is not always the case, we could simply add the
FDs F → E, E → F to Σ in example 3.15, and try to derive the essential FD DF → A.
However, the essential FD DF → C could still be derived directly, without intermediate
inessential FDs:

F → E DE → C

DF → C
so that we still could get DF → A by computing the essentially cartesian closure of the
set of all essentially derivable FDs. This is not by accident.

Theorem 3.78. Let Σ be atomic and E be the set of all FDs essentially derivable from
Σ. Then the essentially cartesian closure E∗ec of E includes Σ∗e, i.e. all essential FDs.

Proof. Same as proof for Theorem 3.75, except that we change the RHS attribute of the
final derived FD, not of the substituting FD.

The last theorem provides an alternative for computing Σ∗e by computing the essen-
tially cartesian closure for the final set of FDs rather than the initial one. While computing
the essentially cartesian closure can be more time-consuming, due to the larger size of the
final set, we start with a smaller set of base FDs which may speed up our linear resolution
computation.

3Note that this is a sufficient but not necessary criteria.

85

3.5.2 Testing essentiality

Theorems 3.75 and 3.78 show that all essential FDs can be derived while avoiding inessen-
tial ones. However, to do this, we require a test to recognize inessential FDs.

We will develop such a test next, and start by providing an efficient criteria for testing
whether a FD is forced.

Theorem 3.79. An atomic FD X → A ∈ Σ∗a is not forced iff there exists a B ∈ X with
X∗ \ AB → A ∈ Σ∗.

Proof. Let X → A be not forced, i.e., Σ∗a \ {X → A} ² X → A. By looking at the
closure algorithm we see that there exists some Y → A ∈ Σ∗a \ {X → A} with Y ⊆ X∗.
As Y is a minimal LHS for A it cannot include X (else it were equal to X), so there must
be some B ∈ X \ Y . Thus Y ⊆ X∗ \ AB which shows X∗ \ AB → A ∈ Σ∗.

Now let X∗ \ AB → A ∈ Σ∗ for some B ∈ X. For every Ai ∈ X∗ \ XA there exists
a minimal set Ui ⊆ X with Ui → Ai ∈ Σ∗a \ {X → A}. As well, there exists a minimal
U ⊆ X∗ \AB with U → A ∈ Σ∗a \ {X → A}. Together they imply X → A, thus X → A
is not forced.

As all forced FDs appear in every canonical cover of Σ, computing the set of all forced
FDs in Σ∗a is easy. What we really need though is a criterion for testing whether a FD
is essential. This, however, is an NP-complete problem, which we will show by reducing
the following problem to it, which is known to be NP-complete [31]:

Problem “prime attribute”

Given a set Σ of FDs on schema R and an attribute A ∈ R, is A a prime attribute,
i.e., does A lie in a minimal key of R?

Theorem 3.80. Given a set Σ of FDs, the problem of deciding whether a FD is essential
is NP-complete.

Proof. To verify that a FD is essential, we only need to guess the canonical cover con-
taining it. By Theorem 3.55 the size of any canonical cover is polynomial in Σ, so the
problem lies in NP.

We prove completeness by reducing the “prime attribute” problem to it. Let G be a
set of FDs on R, and A /∈ R an additional attribute. We construct Σ as

Σ := G ∪ {A → Ai | Ai ∈ R}
We claim that Ai is a prime attribute w.r.t. G iff A → Ai is essential w.r.t. Σ. Since A
does not appear in any FD in G we have

Σ∗a = G∗a ∪ {A → Ai | Ai ∈ R}
Now let Σ′ be any canonical cover of Σ, and let Σ′

A := {A → Ai ∈ Σ′}. Clearly the FD
A → R ∈ Σ∗ is implied by Σ′ iff A → K is implied by Σ′

A for some minimal key K of R
(w.r.t. G). This is the case iff Σ′

A consists of exactly (since Σ′ is non-redundant) those
FDs A → Ai for which Ai ∈ K. Thus A → Ai is essential iff Ai is prime.

From this, we can deduce that identifying the (minimal) autonomous sets of CC(Σ)
is difficult as well.

86

Theorem 3.81. Given a set Σ of FDs and an atomic FD X → A ∈ Σ∗a, the problem of
deciding whether the set {X → A} is autonomous for CC(Σ) is co-NP-complete.

Proof. {X → A} is autonomous iff X → A appears in all or no canonical covers of Σ.
Thus, if {X → A} is not autonomous, we only need to guess one canonical cover which
contains X → A, and one which does not. By Theorem 3.55 the size of these canonical
covers is polynomial in Σ. This shows that the problem lies in co-NP.

To show co-NP-hardness, we use that it is NP-hard to decide whether a FD X → A is
essential. Let Σ′ be any canonical cover of Σ. Such a canonical cover Σ′ can be computed
in polynomial time. By definition, X → A is essential iff it appears in some, but not
necessarily all canonical covers of Σ. We distinguish two cases.

(1) If X → A ∈ Σ′ then X → A is essential.

(2) If X → A /∈ Σ′ then X → A is essential iff it appears in some but not all canonical
covers of Σ, i.e., iff {X → A} is not autonomous.

We thus reduced the NP-hard problem of deciding whether X → A is essential to the
problem of deciding whether {X → A} is not autonomous.

The last theorem shows that the autonomous set problem is hard when given Σ.
However, when we try to find autonomous sets of CC(Σ), we first compute Σ∗a, which
can be exponential in the size of Σ. Thus it might be possible to decide whether a given
set is autonomous in time polynomial in the size of Σ∗a. We show next that this is not
the case.

Theorem 3.82. Given a set Σ of FDs, its atomic closure Σ∗a and an atomic FD X →
A ∈ Σ∗a, the problem of deciding whether the set {X → A} is autonomous for CC(Σ) is
co-NP-complete.

Proof (Sketch). In [31] the NP-hardness of the “prime attribute” problem is shown by first
reducing the “vertex cover” problem to the “key of cardinality m” problem, and then in
turn to “prime attribute”. We will describe a slightly modified version of this reduction.

Let G be the graph for the vertex cover, Σcard the set of FDs for the “key of cardinality
m” problem (denoted D[0]′ in [31]), and Σprime the set of FDs for the “prime attribute”
problem (denoted D[0] in [31]). For the first reduction, Σcard is constructed as follows:

Σcard := {N(v) → v | v is vertex in G}

where N(v) is the neighborhood of v in G.
The second reduction is more complicated. We give a modified version next (the

modification occurs in condition (ii) below), which can be shown to be correct as in [31].
Let A′ be the set of attributes occurring in Σcard, A′′ of cardinality m < |A′| and b a new
attribute. The attribute set for the “prime attribute” problem is then A = A′∪ [A′′×A′],
and Σprime is constructed as follows:

(i) for E → F ∈ Σcard add {b} ∪ E → F to Σprime

(ii) for e ∈ A′ add {e} → A′′ × {e} to Σprime

(iii) for i ∈ A′′ and e ∈ A′ add {b, (i, e)} → {e} to Σprime

87

(iv) for i ∈ A′′ and e, f ∈ A′ distinct add {(i, e), (i, f)} → {b} to Σprime

(v) for e ∈ A′ add {e} → {b} to Σprime

Using these constructions, we want to establish some bounds on the size of the LHSs
of FDs. This can be done by verifying the following statements.

• The size of the LHS of a FD in Σcard is the degree of the corresponding vertex in G

• Σ∗a
card = Σcard

• The LHS of a FD in Σ∗a
prime is at most one larger that the LHS of a FD in Σ∗a

card

The reductions from the “prime attribute” problem to the problems “essential FD”
and then “autonomous set” do not increase the size of the LHSs of atomic FDs. Thus the
maximal size of the LHSs of FDs in Σ∗a is at most one larger that the maximal degree
of vertices in G. It has been shown in [17] that the vertex cover problem is still NP-hard
for graphs of maximal degree 3. These cases reduce to instances of the “autonomous set”
problem for which all FDs in Σ∗a contain at most 4 attributes in their LHS. But there
exist less than k5 such FDs, where k is the number of different attributes occuring in
Σ, so the size of Σ∗a is polynomial in the size of Σ, and can therefore be computed in
polynomial time by Lemma 2.13. This shows the theorem.

In the following we will construct some sufficient (but not necessary) criteria that a FD
is inessential. Recall that N(X → A) denotes the neighborhood of X → A in Tr(CC(Σ)).

Lemma 3.83. X → A ∈ Σ∗a is essential iff Σ∗a \N(X → A) 2 X → A.

Proof. If X → A is essential then Σ∗a \ N(X → A) ∪ {X → A} intersects with every
minimal transversal and thus is a cover of Σ. As Σ∗a \N(X → A) is not a cover of Σ by
Lemma 3.31, Σ∗a \N(X → A) cannot imply X → A.

If X → A is inessential then N(X → A) = {X → A}, and Σ∗a \ {X → A} implies
X → A.

Thus, if we can find a set S ⊆ Σ∗a \N(X → A) with S ² X → A then X → A must
be inessential. Instead of Σ∗a we use only Σ (making Σ canonical if needed). Determining
which FDs in Σ are adjacent to X → A is no easier than testing essentiality (since every
essential FD has an adjacent FD in Σ). However, we do have some criteria that assure
that a FD Y → B is not adjacent to X → A: Clearly all forced FDs are adjacent only to
themselves, and adjacent FDs have equivalent LHSs by Lemma 3.33. Thus we construct
S from all forced FDs and all FDs in Σ with LHS smaller4 than X, as FDs with LHS not
implied by X cannot be used in deriving X → A. Note that we do not lose anything by
using Σ instead of Σ∗a: The FDs in Σ with LHS smaller than X form a cover for the set
of all FDs in Σ∗a with LHS smaller than X by Lemma 2.35.

We can adapt the basic “linear resolution” algorithm to compute all essential FDs
(and possibly more due to the inaccuracy of our essentiality test) as follows:

4w.r.t. the determination pre-order induced by Σ

88

Algorithm “essential linear resolution”

INPUT: set of FDs Σ
OUTPUT: superset of Σ∗e

compute a canonical cover Σ′ of Σ
FΣ := ∅
for all X → A ∈ Σ′ do

if is forced(X → A) then
add X → A to FΣ

end
Σ∗e := Σ′

for all Y → B ∈ Σ∗e do
for all X → A ∈ Σ′ with A ∈ Y, B /∈ X do

// derive (XY \ A) → B by rule (2.1)
find U ⊆ (XY \ A) with U → B atomic
if U → B /∈ Σ∗e and is essential(U → B) then

add U → B to Σ∗e

end
end

// compute essentially cartesian closure
for all X ∈ LHS(Σ∗e) do

RHSX := X∗ \X
for all A ∈ X do

remove (X \ A)∗ from RHSX

end
for all B ∈ RHSX do

if X → B /∈ Σ∗e and is essential(X → B) then
add X → B to Σ∗e

end
end

function is essential(X → A)
smaller(X → A) := {Y → B ∈ Σ | Y ⊆ X∗ ∧X * Y ∗}
if FΣ ∪ smaller(X → A) implies X → A then

return false
else

return true

function is forced(X → A)
for all B ∈ X do

if Σ ² X∗ \ AB → A then
return false

end
return true

89

Other optimizations such as those used in the revised linear resolution algorithm can
be used in computing the essential closure (or a superset thereof) as well. Also, the test

is essential(X → B)

for computing the essentially cartesian closure can be performed for all values B at once,
by computing the closure of X under FΣ ∪ smaller(X → B).

90

Chapter 4

Domination Normal Form

A common approach in designing relational databases is to start with a relation schema,
which is then decomposed into multiple subschemas [10, 34, 38, 42]. A good choice of
subschemas can be determined using integrity constraints defined on the schema, such as
functional, multivalued or join dependencies.

Many normal forms proposed so far, such as BCNF, 4NF or KCNF, characterize the
absence of redundancy [1, 44]. This is desirable for several reasons, foremost the avoidance
of update anomalies [33] and minimization of storage space [9]. However, these normal
forms have significant drawbacks. First, they only consider a single relation schema, in-
stead of considering all schemas in a decomposition together. While this is not strictly
true for the normal form proposed by Topor and Wang in [45], their approach only consid-
ers pairs of schemas at a time, and thus cannot capture redundancy across larger schema
sets.

The common generalization to multiple schemas is that the whole schema collection
is in that normal form, if every schema taken individually is. But this means that those
normal forms cannot capture redundancy which exists across multiple relations. As a
trivial example, we can duplicate a schema. Clearly the extra schema is then superfluous in
the whole schema collection, but each schema taken individually may still be redundancy
free. But even if no schemas or attributes in a schema collection are superfluous, the
design may not be desirable.

Example 4.1. Let R = ABCD and Σ = {AB → CD,CD → B}. Then R is not
in BCNF, but has a dependency preserving BCNF decomposition into the subschemas
ABC, ABD, BCD.

For any instance r of R, the projections of r onto the schemas ABC and ABD together
already take up more space than the original relation r: no tuples are lost in the projection
since AB is a key, and the attributes A and B are stored twice. While we have not
defined what redundancy means for multiple schemas, it seems intuitively clear that this
decomposition should not be called “redundancy free”. From a storage space point-of-
view, it is clearly less desirable than the original schema R.

The second big problem is that dependency preserving decompositions into these nor-
mal forms do not always exist [5]. Thus, when faced with such a case, a designer must
either accept the loss of some dependencies, or cannot achieve the normal form in question.

We believe that what a normal form should do, is the following:

Characterize “good” representations (i.e., decompositions) of a schema, in such a
way that a “good” representation does always exist.

91

In the following we will propose a normal form which meets this criterion.

4.1 Minimization as Normal Form

The approach we suggest is the following: among a set of suitable decompositions (e.g.
the set of all lossless, or lossless and dependency preserving decompositions), characterize
the “best” ones. We do so by defining an order on the decompositions, such that the
“best” decompositions are the minimal ones with respect to that order.

This leaves the question of when to call one decomposition better than another one.
The motivation for many normal forms proposed so far has been the elimination of re-
dundancy (and with it, the absence of update-anomalies). This may suggest to define a
quantitative measure of redundancy over multiple schemas, as has been done by Arenas
and Libkin in [1].

We take a different approach here: instead of trying to minimize redundancy, we try to
minimize the size of instances. Intuitively this should lead to similar results, an assumption
which is supported by the findings of Biskup in [9], but measures for size appear easier
to construct than measures for redundancy (cf. [1]). In the following we will define
and motivate three different orders on decompositions, all of which intuitively compare
decompositions by the size of instances for them. By proving them to be equivalent, we
will establish a syntactic characterization for a semantically motivated definition.

4.1.1 Ordering by Size of Instances

Our first approach measures the space required to store an instance. For that we need to
know for each element of a domain how much storage space it requires. We represent this
knowledge by associating with each domain Dom a size function

size : Dom → N

Consider e.g. the following domains:

• STRING containing strings of arbitrary length

• STRING[40] containing strings of length up to 40

• INT containing arbitrarily large integers

• INT (64) containing all 64-bit integers

• BOOLEAN containing the values TRUE and FALSE

A realistic measure for the size of a string might be its length, the size of an integer i
might be defined as log(i), and the size of TRUE and FALSE might be one.

In this work we shall assume that all domains are infinite, and that the size functions
on them are positive and unbounded, i.e., can grow arbitrarily large. This can be justified
as follows: For any infinite domain a bounded size function is not realistic, since we can
store only a finite number of elements when restricted to a fixed amount of space. While
not all domains are truly infinite, they often contain far more elements than the number of
subschemas in a typical decomposition (e.g. 25640 for STRING[40] or 264 for INT (64)).

92

Treating these domains as infinite will allow us to draw a sharp boundary between small
(bounded) increases in size from duplicated attributes on one hand, and potentially large
(unbounded) increases in size from instances with large numbers of tuples on the other.

We note that this argument fails for domains such as BOOLEAN , and that a con-
stant size function may be more realistic for domains such as STRING[40] or INT (64).
However, in this work we will not concern ourselves with such considerations.

As it will turn out, the assumptions about infinite domains and unbounded size func-
tions, which are common assumptions in database theory [27], are all we need to charac-
terize our new normal form, i.e., we do not require detailed knowledge about the actual
size functions.

Definition 4.1. For a relation r over R and a decomposition D = {R1, . . . , Rn} of R =⋃
Rj we denote the decomposition of r by D as

r[D] := {r[R1], . . . , r[Rn]}
where r[Rj] is the projection of r onto the attributes in Rj. When talking about the
tuples in r[D] containing an attribute A, we will mean the tuples from relations Rj ∈ D
with A ∈ Rj.

Definition 4.2. Let R = {A1, . . . , Ak} be a schema. For a finite relation r over R we
define the size of r as

size(r) :=
∑
t∈r

k∑
i=1

size(πAi
(t))

where πAi
(t) denotes the projection of tuple t onto the attribute Ai. We then define the

size of the decomposition of r by D = {R1, . . . , Rn} of R as

size(r[D]) :=
n∑

j=1

size(r[Rj])

While this gives us a suitable definition of size for any instance, we wish to compare
decompositions w.r.t. the size of all valid instances. If for every valid instance r on R a
decomposition D1 requires no more storage space than a decomposition D2, then D1 ≤ D2

should certainly hold, indicating that D1 is “at most as big” and thus “at least as good” as
D2. Recall that we only consider suitable decompositions, in particular lossless or lossless
and dependency preserving ones.

This alone, however, is not sufficient to characterize good decompositions: for an
instance r containing only a single element, the trivial decomposition {R} requires less
storage space than any other lossless decomposition, as those typically need to duplicate
some attributes. It would be hard to argue though that decomposition is never necessary.
So how can we distinguish decompositions finer, based on the size of instances?

Example 4.2. Let R = ABC and Σ = {B → C}. R can be faithfully decomposed into
D = {AB, BC}. Clearly every relation r decomposed by D (which is a set of relations)
is at most twice as large as r. On the other hand, for every natural number k we can
construct a relation

r =

A B C

1 1 ”a very long string”
2 1 ”a very long string”
...

...
...

k + 1 1 ”a very long string”

93

which is more than k times larger than in decomposed form:

r[AB] =

A B

1 1
2 1
...

...
k + 1 1

r[BC] =
B C

1 ”a very long string”

This observation motivates the following definitions, which compare decompositions
similarly to the “big-O” comparison (e.g. 3x2 + x ∈ O(x2)) from complexity theory.

Definition 4.3. Let R be a schema with constraints Σ and D1,D2 be decompositions of
R. We say that D1 c-dominates D2 (where ”c” stands for complexity) if there exists a
constant k such that for all finite relations r over R that satisfy Σ we have

size(r[D1]) ≤ k · size(r[D2])

We further say that D1 dominates1D2 if the above relationship holds for k = 1. We
abbreviate c-domination and domination as D1 ≤c D2 and D1 ≤ D2, respectively. We say
that D1 strictly (c-)dominates D2, written D1 <(c) D2, if D1 (c-)dominates D2 but not
vice-versa.

It is easy to see that both domination and c-domination are reflexive and transitive,
and thus are pre-orders. Clearly domination implies c-domination.

Proposition 4.4. Let D1,D2 be decompositions of R. If D1 dominates D2 then D1 c-
dominates D2.

Note however that strict domination does not imply strict c-domination. In example
4.1 the original schema ABCD strictly dominates the decomposition {ABC, ABD,BCD},
but both decompositions are equivalent w.r.t. c-domination. Sometimes both crite-
ria, domination and c-domination, are used to characterize the best decomposition for
a schema, as the following example shows.

Example 4.3. Let R = ABCDE and Σ = {AB → CD,B → E}. Then the decomposition
D1 = {ABC,ABD, BE} is minimal w.r.t. c-domination but strictly dominated by D2 =
{ABCD, BE}. The trivial decomposition {R} is minimal w.r.t. domination but strictly
c-dominated by both D1 and D2.

We are now ready to define our normal form based on the idea of minimizing storage
space.

Definition 4.5. Let R be a schema with constraints Σ and D be a decomposition of R.
We say that D is in domination normal form (DNF) if

(i) D is minimal w.r.t. domination, and

(ii) D is minimal w.r.t. c-domination

1This is not related to domination as defined in section 3.5

94

with minimal meaning that no strictly smaller decomposition exists among a given set of
’suitable’ decompositions.

Note that this definition depends on the choice which decompositions we consider
’suitable’. We will investigate two different cases (though other choices might be of interest
as well): the set of all lossless, and the set of all lossless and dependency preserving
decompositions. In each case, we effectively obtain a different DNF.

As the number of suitable decompositions of a given schema is finite, there must exist
a decomposition among them which is minimal w.r.t. domination, as well as a (possibly
different) schema which is minimal w.r.t. c-domination. It is however not clear yet wether
a decomposition into DNF always exists, i.e., one which is minimal w.r.t. both criteria at
once. We will show this next.

Theorem 4.6. Every schema has a decomposition into DNF.

Proof. We use the fact that domination implies c-domination. The c-domination pre-order
induces a partition of all the (suitable) decompositions of R into equivalence classes and
defines a partial order on these equivalence classes. Let EQ be a minimal equivalence class
w.r.t. that order. Choose D to be minimal w.r.t. domination among the decompositions
in EQ. We claim that D is minimal w.r.t. domination among all decompositions of R,
and thus in DNF. Let D′ be any decomposition with D′ ≤ D. Then D′ ≤c D, and since
D is minimal w.r.t. c-domination, D′ ∈ EQ. But D is also minimal w.r.t. domination in
EQ, and thus D ≤ D′. Thus no decomposition D′ strictly dominates D.

4.1.2 Ordering by Attribute Count of Instances

We now introduce an order which does not rely on a size function, but is otherwise similar
to the order we used in the last section. Instead of measuring the total size of instances,
we count the number of tuples an attribute appears in. This gives us domination and
c-domination pre-orders for each attribute, and we can then combine these to get another
pair of orderings for decompositions.

Definition 4.7. Let R = {A1, . . . , Ak} be a schema. For a finite relation r over R and
an attribute A we define the count of A on r as

countA(r) :=

{
|r| if A ∈ R

0 if A /∈ R

where |r| denotes the number of tuples in r. We then define the count of A on r decom-
posed by a decomposition D = {R1, . . . , Rn} of R as

countA(r[D]) :=
n∑

j=1

countA(r[Rj])

Definition 4.8. Let R be a schema with FDs Σ, A an attribute andD1,D2 decompositions
of R. We say that D1 c-dominates D2 w.r.t. A if there exists a constant k such that for
all finite relations r over R that satisfy Σ we have

countA(r[D1]) ≤ k · countA(r[D2])

We further say that D1 dominates D2 w.r.t. A if the above relation holds for k = 1.

95

Thus, for each attribute A, we get a c-domination and domination pre-orders. We
combine those pre-orders by intersection.

Definition 4.9. Let R be a schema and D1,D2 decomposition of R. We say that

D1

{
dominates
c-dominates

}
D2 w.r.t. attribute count

if for every attribute A ∈ R we have D1

{
dominates
c-dominates

}
D2 w.r.t. A.

We will prove later on that domination and c-domination w.r.t. attribute count and
w.r.t. size are exactly the same orders.

4.1.3 Ordering by Containing Schema Closures

The previous two order pairs introduced are defined by considering all valid instances.
This is not very practical if we wish to actually decide for two given decompositions
whether one (c-) dominates the other. We therefore present a third pair of orders, which
is defined by considering only the decompositions, rather than instances on them.

The approach we use is similar to attribute counting. The count of an attribute
depends on the set of schemas it lies in. While it also depends on the instance r, it is easy
to show that the number of tuples in r[Rj] is determined by the closure R∗

j of Rj (and by
r). Recall that the closure R∗

j of Rj under Σ is

R∗
j := {A ∈ R | Σ ² Rj → A}

where Σ is a given set of constraints on R. In this work, we shall mainly be interested in
functional, multi-valued and join dependencies.

Lemma 4.10. Let R be a schema with constraints Σ, and X ⊆ R. Then for all relations
r on R we have |r[X]| = |r[X∗]|.

Proof. We can obtain r[X] by projecting from r[X∗]. The only way for the number of
tuples to decrease, is for r[X∗] to contain different tuples which are identical on X. But
this cannot happen since X functionally determines X∗.

This motivates the following definitions.

Definition 4.11. Let R be a schema with constraints Σ, and D a decomposition of R.
Then for any attribute A ∈ R we define the containing schema closures (CSC) of A in D
as the multiset

CSCA(D) = {R∗
j | A ∈ Rj ∈ D}

The idea behind this definition is that the containing schema closure of an attribute A
represents the attribute count for A in a way which does not rely on particular instances,
but still allows comparison of different decompositions. It is necessary to use multisets
rather than sets to represent the correct attribute count.

96

Example 4.4. Consider again the schema R = ABCDE with constraints Σ = {AB →
CD, B → E} from example 4.3, and the decompositions

D1 = {ABC, ABD,BE}
D2 = {ABCD, BE}

They produce the multisets

CSCA(D1) = {ABCDE, ABCDE}
CSCA(D2) = {ABCDE}

which indicate that, for any relation r on R, the attribute A appears in twice as many
tuples in r[D1] as in r[D2]. Using sets would hide this difference.

We will now compare decompositions using the respective CSCs of all attributes. For
that we need mappings between multi-sets. We allow different instances of the same value
in the source domain to map to different values, and call a mapping injective if a value in
the target domain is mapped to at most as often as it occurs in the target domain.

Definition 4.12. Let M1,M2 be two multisets2 of (attribute) sets. We say that

(i) M1 weakly inclusion-dominates M2 if there exists a mapping f : M1 → M2 with
e ⊆ f(e) for all e ∈ M1.

(ii) M1 strongly inclusion-dominates M2 if there exists an injective mapping f : M1 →
M2 with e ⊆ f(e) for all e ∈ M1.

Definition 4.13. Let D1,D2 be two decompositions of R. We say that D1 weakly/strongly
csc-dominates D2 if for all attributes A ∈ R we have that CSCA(D1) weakly/strongly
inclusion-dominates CSCA(D2).

We will prove in the next section that weak csc-domination implies c-domination, and
that strong csc-domination implies domination. While the opposite does not hold for
arbitrary types of constraints, we will be able to show that it holds for sets of functional
dependencies, and in the case of weak csc-domination/c-domination also for multi-valued
and join dependencies. Thus we obtain a syntactic characterization for c-domination
and, at least in the case of functional dependencies, for domination. For multi-valued
dependencies, domination does not imply strong csc-domination, as will become evident
in example 4.10. Finding a syntactic characterization for domination in this case is an
open problem.

4.2 Equivalence of Orderings

We will show that, if the only integrity constraints on R are functional dependencies,
then all three order pairs defined in section 4.1 are identical. If multi-valued and join
dependencies are also allowed, then domination w.r.t. size or attribute count need not
imply weak csc-domination, but we will show that the other equivalences between the
orders in question still hold.

As multi-valued dependencies are just a special case of join dependencies, it suffices to
consider only functional and join dependencies. We will assume throughout this section
that functional and join dependencies are the only types of integrity constraints occurring.

2Note that for definition (i) we do not really need multi-sets.

97

4.2.1 Size vs. Attribute Count

We start by showing that the orders defined by size and attribute count are identical.
Recall that we assume that all domains are infinite, and that the size functions associated
with them are positive and unbounded.

Lemma 4.14. Let R be a schema with functional and join dependencies Σ, and D1,D2

be decompositions of R. If D1 does not (c-)dominate D2 w.r.t. attribute count, then D1

does not (c-)dominate D2 w.r.t. size.

Proof. If D1 does not c-dominate D2 w.r.t. attribute count, then for every integer k there
exists a relation r and an attribute A with

countA(r[D1]) > k · countA(r[D2])

For each k and associated r and A, we will construct a relation r′ for which

size(r′[D1]) > k · size(r′[D2])

holds. This shows that D1 does not c-dominate D2 w.r.t. size. For domination we only
need to consider the case k = 1.

The construction works as follows. Since the relations in r[D1] with attribute A contain
more than k times as many tuples as those in r[D2], there must be an attribute value vA

for A which appears more than k times as often in r[D1] as in r[D2].
We construct r′ from r by substituting every occurrence of vA by a new value v′A

which does not appear in r. As Σ contains only functional and join dependencies, these
constraints still hold for r′. Let o1, o2 be the number of occurrences of vA in r[D1], r[D2].
We choose v′A sufficiently large, i.e., such that

size(v′A) >
k · size(r[D2])− size(r[D1])

o1 − k · o2

+ size(vA)

This gives us (note that o1 − k · o2 > 0):

(o1 − k · o2) · (size(v′A)− size(vA)) > k · size(r[D2])− size(r[D1])

size(r[D1]) + o1 · (size(v′A)− size(vA)) > k · size(r[D2]) + k · o2 · (size(v′A)− size(vA))

size(r′[D1]) > k · size(r′[D2])

This concludes the proof.

Lemma 4.15. Let R be a schema with functional and join dependencies Σ, and D1,D2

be decompositions of R. If D1 does not (c-)dominate D2 w.r.t. size, then D1 does not
(c-)dominate D2 w.r.t. attribute count.

Proof. The proof is analogous to the last one. For every k, r (k = 1 for domination) with

size(r[D1]) > k · size(r[D2])

we need to construct a relation r′ such that for some attribute A we get

countA(r′[D1]) > k · countA(r′[D2]).

98

Again we use that the attribute values occurring in r[D1] and r[D2] are the same. Since
size(r[D1]) > k · size(r[D2]), there must exist some attribute value vA of an attribute A
which occurs more than k times as often in r[D1] than in r[D2]. We construct r′ from r
by selecting exactly those tuples which have the value vA on attribute A. As Σ contains
only functional and join dependencies, these constraints still hold for r′. And clearly we
now have countA(r′[D1]) > k · countA(r′[D2]).

We can combine the last two lemmas.

Theorem 4.16. Let R be a schema with functional and join dependencies Σ, and D1,D2

be decompositions of R. Then D1 (c-)dominates D2 w.r.t. size iff D1 (c-)dominates D2

w.r.t. attribute count.

Proof. Follows immediately from the lemmas shown.

4.2.2 Attribute Count vs. Containing Schema Closures - Part I

We will now show that the orders defined by attribute count and containing schema
closures are actually the same. One direction of implication is easy to show.

Theorem 4.17. Let R be a schema with constraints3 Σ, and D1,D2 be decompositions of

R. If D1

{
weakly
strongly

}
csc-dominates D2 then D1

{
c-dominates
dominates

}
D2.

Proof. Let r be any relation on R and A some attribute in R.
If D1 weakly csc-dominates D2, then for every schema R1 ∈ D1 with A ∈ R1 there

exists a schema R2 ∈ D2 with A ∈ R2 and R∗
1 ⊆ R∗

2. By Lemma 4.10 we have |R1| ≤ |R2|,
and each such schema R2 is mapped to at most |D1| times. Therefore the number of
tuples containing attribute A in r[D1] is at most |D1| times larger than the number of
tuples with A in r[D2]. Thus D1 c-dominates D2 with k = |D1|.

If D1 strongly csc-dominates D2, then by Lemma 4.10 and due to the injectivity of the
mapping f in Definition 4.12, the number of tuples with attribute A in r[D1] is no larger
than the number of those in r[D2]. Thus D1 dominates D2.

To show implication in the other direction, we will assume that D1 does not weakly or
strongly csc-dominate D2, and construct example relations which show that D1 does not
c-dominate or dominate D2. These constructions will require some work, and we devote
the next subsection to them.

4.2.3 Subset Construction

Our goal is to construct relations over a schema D with functional and join dependencies
Σ, for which the number of tuples in their projection onto non-key subschemas varies by
an arbitrarily large factor.

Definition 4.18. Let R be a schema with constraints Σ and D = {R1, . . . , Rn} a decom-
position of R. We say that a non-empty relation r over R is k-reducing w.r.t. D for an
integer k if

3Theorem 4.17 holds for arbitrary constraints, not just functional and join dependencies.

99

(i) all constraints in Σ hold on r, and

(ii) for every subschema Rj ∈ D which is not a key of R, the projection of r onto Rj

contains at most 1
k

times as many tuples as r.

The following example illustrates the basic idea for constructing k-reducing relations.

Example 4.5. Consider the schema R = ABCD with constraint set

Σ = {AB → C, C → AB, A → D, B → D}

and the (faithful and lossless) decomposition D = {ABC,AD,BD}. We can construct a
2-reducing instance of R w.r.t. D as follows:

r =

A B C D

1 1 (1, 1) 1
1 2 (1, 2) 1
2 1 (2, 1) 1
2 2 (2, 2) 1

The FDs in Σ clearly hold, and the projections of r onto AD and BD contain only 2
tuples, compared to 4 tuples in r.

We constructed the example relation above by creating two variables vA, vB with do-
main {1, 2}, and for each value pair (vA = a, vB = b) creating a tuple in r, making the
value of A dependent on a, the value of B dependent on b, the value of C dependent on
both and the value of D dependent on neither. We formalize this idea as follows.

Definition 4.19. Let Ω be a finite set and R be a set of attributes, where each Ai ∈ R
has a subset Si of Ω associated with it. For a positive integer k we define the k-mappings
of Ω as the total functions from Ω into {1, . . . , k}. For each k-mapping f we define its
lifting onto R as the tuple tf on R, in which the attribute Ai has as value the partial
function

f |Si
: Ω → {1, . . . , k} := {x → y ∈ f | x ∈ Si}

We get the k-lifting of R by taking all k-mappings of Ω and lifting them all onto R. Note
that the k-lifting is a set of tuples on R, and thus a relation on R.

While the attribute values constructed by lifting k-mappings are partial functions
rather than elements of the attribute’s domain, it is easy to see that one could always
substitute those values with values from the proper domains (recall that we assumed do-
mains to be infinite) to get an isomorphic relation on R. Note that while this substitution
may affect the size of relations, it has no affect on attribute count. As we are only try-
ing to relate the containing schema closure measures to attribute count, rather than size
measures directly, we will not worry about size or domains any further.

When giving examples, we will use attributes “A, B, . . .” rather than “A1, A2, . . .”, and
denote their associated subsets by “SA, SB, . . .” instead of ”S1, S2, . . .”.

Example 4.6. The given definitions can be related to example 4.5 as follows. We have

Ω = {vA, vB}, SA = {vA}, SB = {vB}, SC = {vA, vB}, SD = ∅

100

Writing the total function {vA 7→ a, vB 7→ b} short as (a, b), we obtain the set of all
2-mappings as

{1, 2}Ω =

(1, 1),
(1, 2),
(2, 1),
(2, 2)

.

These k-mapping get lifted onto R as follows, writing the partial function {vA 7→ a} as
(a,−):

A B C D
(1, 1) y (1,−) (−, 1) (1, 1) (−,−)
(1, 2) y (1,−) (−, 2) (1, 2) (−,−)
(2, 1) y (2,−) (−, 1) (2, 1) (−,−)
(2, 2) y (2,−) (−, 2) (2, 2) (−,−)

Ignoring blanks and substituting (−,−) by 1, we obtain relation r from example 4.5.

The lifting of a k-mapping depends on the sets Si associated with the attributes Ai,
and these sets Si are the only free choices we have in our construction. Note that elements
of Ω which do not appear in any Si do not affect the construction, thus we may as well
assume that Ω =

⋃
Si. Given a schema R with constraints Σ and a decomposition D of

R, we want to choose the sets Si in such a way that the constructed relation is k-reducing.
We will first consider the case where Σ contains only FDs.

Definition 4.20. For a subschema X ⊆ R we call the set

SX :=
⋃

Ai∈X

Si

the subset associated with X. For v ∈ Ω we call

Rv := {Ai ∈ R | v ∈ Si}

the set of attributes depending on v.

Note that {Si | Ai ∈ R} and {Rv | v ∈ Ω} are dual hypergraphs.

Lemma 4.21. Let Ω and R be as in Definition 4.19, X a subschema of R and SX its
associated subset of cardinality s. Let rk be the k-lifting of R and xk the k-lifting of X.
Then

xk = rk[X]

and xk contains exactly ks tuples.

Proof. Let f be a k-mapping of Ω, and tf,R and tf,X its liftings onto R and X, respectively.
By definition tf,X = tf,R[X], and since this holds for all f we get xk = rk[X].

Clearly there are ks k-mappings of SX . We show that xk contains ks tuples by giving
a one-to-one mapping between tuples of xk and k-mappings of SX .

The components of a tuple tf,X ∈ xk are the partial functions f |Si
. By taking their

union we obtain f |SX
, which is a k-mapping of SX . Conversely, we can obtain tf,X from

f |SX
by restricting f |SX

to the associated sets Si ⊆ SX with Ai ∈ X. This gives us the
one-to-one mapping we wanted.

101

Lemma 4.22. Let Ω and R be as in Definition 4.19, k ≥ 2 and rk the k-lifting of R. Let
further X, Y ⊆ R, and SX , SY be their associated subsets. Then the FD X → Y holds on
rk iff SX ⊇ SY .

Proof. (1) Let SX ⊇ SY , and let t1, t2 ∈ rk be tuples in rk. If t1[X] = t2[X] then the
k-mappings f1, f2 which were lifted onto R to obtain t1 = tf1 and t2 = tf2 have the same
restriction to SX , that is f1|SX

= f2|SX
. Since SX ⊇ SY this implies that f1|SY

= f2|SY
,

and therefore t1[Y] = t2[Y]. Thus X → Y holds on rk.
(2) Let SX + SY , i.e., there exists some v ∈ SY \ SX . Let f1, f2 be k-mappings of Ω

which differ only on v. Then for their liftings tf1 , tf2 ∈ rk onto R we have tf1 [X] = tf2 [X]
but tf1 [Y] 6= tf2 [Y]. Thus X → Y does not hold on rk.

Definition 4.23. Let R be a schema with constraints Σ. We say that a subschema X ⊆ R
is open if its complement R \X is closed under Σ, that is,

(R \X)∗ = R \X

Lemma 4.24. Let Ω, R, Σ and Si be as in Definition 4.19, k ≥ 2 and rk the k-lifting of
R. Let Σ contain only FDs. Then Σ holds on rk iff for every v ∈ Ω the subschema Rv of
attributes depending on v (Definition 4.20) is open.

Proof. (1) Let all Rv be open. Assume that some FD X → Y ∈ Σ does not hold on rk.
Then by Lemma 4.22 there exists some v ∈ SY \ SX . This means that X contains no
attributes which depend on v, i.e., no attributes in Rv, so X ⊆ R \ Rv. Since R \ Rv is
closed under Σ this implies Y ⊆ R \ Rv, and thus v /∈ SY . This contradicts v ∈ SY \ SX

and disproves our assumption.
(2) Let Rv not be open for some v ∈ Ω. Then there exists an attribute A ∈ Rv with

Σ ² R \ Rv → A. Due to A ∈ Rv we have v ∈ SA, and clearly v /∈ SR\Rv by Definition
4.20. Therefore the FD R \Rv → A does not hold on rk by Lemma 4.22.

Lemmas 4.21 and 4.24 indicate how we should construct the Si to obtain a relation
on R which is k-reducing w.r.t. some decomposition D. For every subschema Rj ∈ D
which is not a key of R, there should be an element v ∈ Ω which does not lie in the subset
SRj

associated with Rj. At the same time, the set Rv should be open. This leads to the
following construction.

Subset Construction for FDs: Let R be a schema with FDs Σ, and D a decomposition
of R. For every subschema Rj ∈ D we form its closure R∗

j , and add a unique element
vj to every set Si for which Ai /∈ R∗

j . The set Ω from Definition 4.19 is then

Ω :=
⋃

Si = {vj | Rj ∈ D and R∗
j 6= R}

Note that if D contains multiple subschemas with the same closure, it would suffice to
consider only one of them when constructing the sets Si.

Example 4.7. Consider again the schema R and decomposition D from examples 4.5 and
4.6. Applying the subset construction we get

ABC∗ = ABCD y do nothing
BD∗ = BD y add vBD to SA, SC

AD∗ = AD y add vAD to SB, SC

102

This gives us the associated subsets

SA = {vBD}, SB = {vAD}, SC = {vBD, vAD}, SD = {}
which (except for element names) are the same as in example 4.6.

Theorem 4.25. Let R be a schema with FDs Σ, and D a decomposition of R. Let the Si

be constructed using the subset construction for FDs. Then for every k the k-lifting rk of
R is k-reducing w.r.t. D.

Proof. (i) Let v = vj be added to Ω when considering Rj during the subset construction.
By construction Rv = R \R∗

j is open, so Σ holds on rk by Lemma 4.24.
(ii) For every subschema Rj ∈ D which is not a key of R, SR = Ω contains at least one

more element than SRj
, namely the element vj which was associated with all attributes

in R \R∗
j . Thus by Lemma 4.21, the projection of rk onto Rj contains at most 1

k
times as

many tuples as rk.

We will now generalize the subset construction to work with functional and join de-
pendencies. We first need to establish when a join dependency holds on a k-lifting.

Definition 4.26. Let Ω and R be as in Definition 4.19 and ./ [R1, . . . , Rn] a join-
dependency on R. For every v ∈ Ω the synchronization hypergraph of v w.r.t. ./
[R1, . . . , Rn] is the projection of the hypergraph {R1, . . . , Rn} onto Rv (the set of at-
tributes depending on v), i.e.,

sync(v) = {R1 ∩Rv, . . . , Rn ∩Rv}
Lemma 4.27. Let Ω and R be as in Definition 4.19, k ≥ 2 and rk the k-lifting of R. Let
further ./ [R1, . . . Rn] be a join-dependency on R. Then ./ [R1, . . . , Rn] holds on rk iff for
all v ∈ Ω the synchronization hypergraph Hv of v w.r.t. ./ [R1, . . . , Rn] is connected.

Proof. Let SR be the subset of Ω associated with R. By definition, the join dependency
./ [R1, . . . Rn] holds on rk iff

rk[R1] .// rk[Rn] =: jk ⊆ rk

(1) Consider a single tuple t ∈ jk, and recall that all its attribute values are partial
functions Ω → {1, . . . , k}. Let us denote the union of these partial functions by

⊔
t,

which is a relation ft ⊆ Ω × {1, . . . , k}. If ft is a function, then t is the lifting of ft

onto R, and thus t ∈ rk. On the other hand, every t′ ∈ rk is the lifting of some function
f : Ω → {1, . . . , k}, and thus

⊔
t′ = f . Together this gives us that a tuple t ∈ jk lies in rk

iff
⊔

t is a function.
(2) Let t ∈ jk, v ∈ Ω. For every subschema Rj from ./ [R1, . . . , Rn] we have that

t[Rj] = t′[Rj] for some t′ ∈ rk, and therefore that
⊔

t[Rj] is a partial function. Furthermore
we have ⊔

t[Ri ∪Rj] =
⊔

t[Ri] ∪
⊔

t[Rj]

If there exists an attribute A ∈ Ri ∩ Rj, then every v associated with A has the same
image4 under

⊔
t[Ri] as it has under

⊔
t[Rj], so

⊔
t[Ri ∪Rj] is a function for v, i.e., it

4One could say that the mapping of v is “synchronized”, hence the name “synchronization hyper-
graph”.

103

maps v to only a single value. For a given v ∈ Ω let Rv be the set of attributes depending
on v. Then such an attribute A exists for v iff Ri ∩Rv and Rj ∩Rv are not disjoint, i.e.,
iff the partial synchronization hypergraph with edges Ri ∩Rv and Rj ∩Rv is connected.

(3) If Hv is connected, we can use the argument of (2) multiple times to show that for
any t ∈ jk

⊔
t is a function for v. If all Hv are connected,

⊔
t is a function, which by (1)

shows t ∈ rk, and thus jk ⊆ rk. This proves the “if” direction of the lemma.
(4) If Hv is disconnected for some v (which implies v ∈ SR), then we can partition

{R1, . . . , Rn} into two sets P1, P2 such that the attribute sets
⋃

P1 ∩ Rv and
⋃

P2 ∩ Rv

are disjoint and non-empty. Since k ≥ 2 we can find two functions f1, f2 : Ω → {1, . . . , k}
which differ exactly for v. Let t1, t2 ∈ rk be their liftings onto R. Then by definition of jk

there exists a tuple t ∈ jk with

t[P1] = t1[P1] and t[P2] = t2[P2]

But this gives us ⊔
t =

⊔
t1[P1] ∪

⊔
t2[P2]

which is not a function since
⊔

t1[P1] and
⊔

t2[P2] map v to different values. As
⊔

t is
not a function we get t /∈ rk by (1), and thus jk * rk. This shows the “only if” direction
and completes the proof.

Definition 4.28. Let X ⊆ R be an attribute set and Σ a set of functional and join
dependencies on R. The dependency basis of X w.r.t. Σ (and R) is the finest partition
DBΣ(X) of R\X∗ into non-empty sets, such that for every Y ∈ DBΣ(X) the multivalued
dependency X ³ Y is implied by Σ. Where Σ is clear from the context we will just write
DB(X) for DBΣ(X).

It is well known that such a unique finest partition always exists [36]. Note that some
texts define the dependency basis of X as the finest partition of R rather than R \ X∗.
As Σ implies X ³ A for all A ∈ X∗, this partitions X∗ into sets each consisting of only a
single attribute. Thus knowing the partition of R \X∗ immediately gives us the partition
of R as well. We chose the given definition as it makes some formulations easier.

The following inference rules for functional and multivalued dependencies are well-
known to be correct [33, 36], and will be useful in what follows:

X ³ Y

X ³ XY
(Augmentation)

X ³ Y Y ³ Z

X ³ Z \ Y
(Pseudo-Transitivity)

X ³ Y Y → Z

X → Z \ Y
(Mixed Pseudo-Transitivity)

Lemma 4.29. Let Σ be a set of functional and join dependencies on R. Then for every
X ⊆ R, every Y ∈ DB(X) is open, i.e., R \ Y is closed under Σ.

Proof. Assume that R \ Y were not closed under Σ. Then for some attribute A ∈ Y we
have Σ ² R \ Y → A. Since Y ∈ DB(X) we have Σ ² X ³ R \ Y . Using these two facts
together we can derive

X ³ R \ Y R \ Y → A

X → A
(Mixed Pseudo-Transitivity)

104

Thus A ∈ X∗ ∩ Y , which is a contradiction to Y ∈ DB(X), since DB(X) partitions
R \X∗.

Our intermediate goal is to construct (for given R, Σ and D) the sets Si, such that for
every k the resulting k-lifting rk is k-reducing. We have found such a construction for the
case where Σ contains only functional dependencies. When Σ contains join dependencies
as well, we need to adapt our construction, since otherwise the join dependencies in Σ
need not hold on rk.

Example 4.8. Consider the schema R = ABCD with constraints

Σ = {./ [AB,AC,AD]}
≡ {A ³ B|C|D}

and decomposition D = {AB, AC, AD}. Using the subset construction for functional
dependencies, we would get the sets

SA = {}, SB = {vAC , vAD}, SC = {vAB, vAD}, SD = {vAB, vAC}
which in turn lead to the 2-lifting (again writing partial functions as tuples):

r2 =

A B C D
(−,−,−) (−, 1, 1) (1,−, 1) (1, 1,−)
(−,−,−) (−, 1, 2) (1,−, 2) (1, 1,−)
(−,−,−) (−, 2, 1) (1,−, 1) (1, 2,−)
(−,−,−) (−, 2, 2) (1,−, 2) (1, 2,−)
(−,−,−) (−, 1, 1) (2,−, 1) (2, 1,−)
(−,−,−) (−, 1, 2) (2,−, 2) (2, 1,−)
(−,−,−) (−, 2, 1) (2,−, 1) (2, 2,−)
(−,−,−) (−, 2, 2) (2,−, 2) (2, 2,−)

It is easy to check that ./ [AB,AC,AD] does not hold on r2.

We observe that the join dependency ./ [AB, AC, AD] in the example above does
not hold because the sets SB, SC , SD share common elements, i.e., they are not pairwise
disjoint. This establishes a connection between the values of B, C and D for every tuple
in rk. To avoid such connections, we could associate vAB, vAC and vAD only with the
attributes of one set Y in DB(AB), DB(AC) and DB(AD), respectively.

While in general it is critical that for every v ∈ Ω the set Rv of attributes associated
with v is open, in order to ensure that the FDs in Σ hold on rk (Lemma 4.24), Lemma
4.29 ensures us that every Y ∈ DB(X) is open, for any X ⊆ R. This motivates the
following construction:

Generalized Subset Construction: Let R be a schema with functional and join de-
pendencies Σ, and D a decomposition of R. For every subschema Rj ∈ D with
R∗

j 6= R we form its dependency basis DB(Rj). Then for some (arbitrary) set
Y ∈ DB(Rj), we add a unique element vj to every set Si for which Ai ∈ Y .

Note that when Σ contains only functional dependencies, we have

DB(Rj) = {R \R∗
j}

Thus the generalized subset construction is identical to the subset construction for FDs
in such cases, which justifies its name.

105

Example 4.9. Consider again the schema R = ABCD with constraints

Σ = {./ [AB,AC,AD]}

and decomposition D = {AB, AC, AD}. Using the generalized subset construction we
might get the sets (depending on the choices for Y)

SA = {}, SB = {vAC}, SC = {vAD}, SD = {vAB}

which lead to the 2-lifting:

r2 =

A B C D
(−,−,−) (−, 1,−) (−,−, 1) (1,−,−)
(−,−,−) (−, 1,−) (−,−, 2) (1,−,−)
(−,−,−) (−, 2,−) (−,−, 1) (1,−,−)
(−,−,−) (−, 2,−) (−,−, 2) (1,−,−)
(−,−,−) (−, 1,−) (−,−, 1) (2,−,−)
(−,−,−) (−, 1,−) (−,−, 2) (2,−,−)
(−,−,−) (−, 2,−) (−,−, 1) (2,−,−)
(−,−,−) (−, 2,−) (−,−, 2) (2,−,−)

It is easy to verify that ./ [AB, AC, AD] now holds on r2.

Proposition 4.30. For every join dependency ./ [R1, R2, . . .] we have:

./ [R1, R2, . . .] ² ./ [R1 ∪R2, . . .]

i.e., if we replace any two (or more) subschemas in a join dependency by their union, we
obtain an implied join dependency.

Proof. Clear by definition of join dependency.

Theorem 4.31. Let R be a schema with functional and join dependencies Σ, and D a
decomposition of R. Let the Si be constructed using the generalized subset construction.
Then the k-lifting rk of R is k-reducing, for every k ∈ N.

Proof. Part (ii) of the k-reducing property can be shown as in Theorem 4.25. The dif-
ficulty lies in showing part (i), namely that all constraints in Σ hold. This is clear for
functional dependencies by lemmas 4.29 and 4.24.

Assume that some join dependency ./ [R1, . . . , Rn] ∈ Σ does not hold for rk, k ≥ 2
(k = 1 is trivial). Then by Lemma 4.27 there must be some v ∈ Ω for which the
synchronization hypergraph

Hv = {R1 ∩Rv, . . . , Rn ∩Rv}

of v w.r.t. ./ [R1, . . . , Rn] is disconnected. Then we can partition Rv, the set of attributes
depending on v, into non-empty sets

Rv = H1 ∪H2

106

such that every Rj from ./ [R1, . . . , Rn] is disjoint to H1 or H2. Let U1 be the union of
Rj disjoint to H2, and U2 of those disjoint to H1. Then by Proposition 4.30 we have:

Σ ² ./ [R1, . . . , Rn] ² ./ [U1, U2]

Now let X be the closure of the subschema in D for which v was added. By construction
we have Rv ∈ DB(X), so that we can partition R into X, Rv and the remaining attributes
Z := R \ (X ∪Rv), so that

R = X ∪ Z ∪Rv

= X ∪ Z ∪H1 ∪H2

Then U1 ⊆ X ∪ Z ∪H1 and U2 ⊆ X ∪ Z ∪H2, and thus

Σ ² ./ [U1, U2]

² ./ [X ∪ Z ∪H1, X ∪ Z ∪H2]

≡ XZ ³ H1

Since Z is the union of elements of the dependency basis of X, we have X ³ Z, and thus

X ³ Z XZ ³ H1

X ³ H1

(Pseudo-Transitivity)

This is a contradiction, since ∅ 6= H1 (Rv, and Rv ∈ DB(X).

4.2.4 Attribute Count vs Containing Schema Closures - Part II

We are now ready to complete the equivalence proof for attribute count and csc-domination
orders.

Lemma 4.32. Let Σ be a set of functional and join dependencies on R, and X, Y ⊆ R.
Then Σ ∪ {Y → R} ² X → Y iff Σ ² X → Y .

Proof. If Σ implies X → Y then clearly Σ ∪ {Y → R} implies X → Y as well. Now let
Σ 2 X → Y , so that there exists a relation r on R for which all dependencies in Σ hold,
but not X → Y . Then there exist at least two tuples t1, t2 ∈ r with

t1[X] = t2[X], t1[Y] 6= t2[Y]

Among all such pairs of tuples, let (t1, t2) be one for which the set of attributes D ⊆ R on
which t1 and t2 differ is minimal. We claim that r′ := {t1, t2} is a relation for which the
dependencies in Σ∪{Y → R} hold but not X → Y , thus showing Σ∪{Y → R} 2 X → Y .

Clearly Y → R holds for r′, but not X → Y . Furthermore all FDs in Σ hold for r′

since r′ ⊆ r. Now for any join dependency ./ [R1, . . . , Rn] ∈ Σ let

r′′ := r′[R1] .// r′[Rn]

be the result of the corresponding project-join mapping of r′. By definition ./ [R1, . . . , Rn]
holds for r′ iff r′′ ⊆ r′.

Let t3 ∈ r′′ be arbitrary. Since t1[Y] 6= t2[Y] at least one of the inequalities t3[Y] 6=
t1[Y] and t3[Y] 6= t2[Y] holds, say t3[Y] 6= t1[Y]. For every attribute A ∈ R we have

107

t3[A] ∈ {t1[A], t2[A]} by construction of r′′. Since t1[R \D] = t2[R \D], t3 differs from t1
at most on the attributes in D. But t1, t2 were chosen to make D minimal, and due to

r′′ ⊆ r[R1] .// r[Rn] = r

we have t3 ∈ r. Thus t3 differs from t1 (and therefore equals t2) on all attributes in D.
Consequently t3 = t2 ∈ r′, which shows r′′ ⊆ r′ and completes the proof.

Theorem 4.33. Let R be a schema with functional and join dependencies Σ, and D1,D2

be decompositions of R. If D1 does not weakly csc-dominate D2, then D1 does not c-
dominate D2.

Proof. Recall that by definitions 4.12 and 4.13 D1 weakly csc-dominates D2 iff for every
attribute A and every schema R1 with A ∈ R1 ∈ D1 there exists a schema R2 ∈ D2

with A ∈ R2 and R∗
1 ⊆ R∗

2. As D1 does not weakly csc-dominate D2, there must exist
A,R1 with A ∈ R1 ∈ D1, such that for every schema R2 ∈ D2 with A ∈ R2 we have
R∗

1 * R∗
2, i.e., Σ 2 R2 → R1. To show that D1 does not c-dominate D2, we construct a

counterexample for any value k.

We construct the counterexample r on R by using the generalized subset construction
for CSCA(D2), but for an extended set of constraints

Σ′ := Σ ∪ {R1 → R}

This makes R1 a key of R w.r.t. Σ′, and by Lemma 4.32 we still have Σ′ 2 R2 → R1 for
all R2 in question. Then by Lemma 4.10 the number of tuples in r[R1] equals the number
of tuples in r, which by Theorem 4.31 is at least k times larger than the number of tuples
in r[R2], for any R2 ∈ D2 with A ∈ R2. Thus D1 does not c-dominate D2.

The following theorem is well-known [21].

Theorem 4.34 (Hall’s Theorem). Let M1,M2 be finite sets and π : M1 → P(M2) asso-
ciate a set of permitted values with each element in M1. Then there exists an injective
mapping f : M1 → M2 with f(e) ∈ π(e) for all e ∈ M1 iff for all m1 ⊆ M1 we have
|m1| ≤ |π(m1)|, where

π(m1) :=
⋃
{π(e) | e ∈ m1}

Lemma 4.35. Let Σ be a set of functional dependencies on R, and further X, Y1, . . . , Yn ⊆
R. Then Σ ∪ {Y1 → R, . . . , Yn → R} ² X → R holds iff Σ ² X → Yi for some
i ∈ {1, . . . , n}.

Proof. (1) If Σ ² X → Yi then Σ ∪ {Yi → R} ² X → R by transitivity (rule 1.1).

(2) Otherwise let X∗ denote the closure of X under Σ, and let r = {t1, t2} be a relation
on R containing two tuples with t1[X

∗] = t2[X
∗] and t1[A] 6= t2[A] for all A /∈ X∗. Then

Σ holds on r, and since for all Yi we have Yi * X∗, the functional dependencies Yi → R
hold as well. It is clear though that X → R does not hold on r, and thus is not implied
by Σ ∪ {Y1 → R, . . . , Yn → R}.

108

Theorem 4.36. Let R be a schema with functional dependencies Σ, and D1,D2 be de-
compositions of R. If D1 does not strongly csc-dominate D2, then D1 does not dominate
D2.

Proof. Let D1 not strongly csc-dominate D2. This means that for some A ∈ R there exists
no injective mapping

f : M1 := CSCA(D1) → M2 := CSCA(D2)

with e ⊆ f(e) for all e ∈ M1. The permitted values for e ∈ M1 in such a mapping would
be

π(e) := {e′ ∈ M2 | e ⊆ e′}
Note that M1,M2 are multisets, rather than sets. However, to make the formulation

of the following arguments easier, we shall regard them as sets by treating multiple oc-
currences of elements in M1, M2 as different. This does not change whether an injective
mapping f exists.

By Theorem 4.34 there exists a set m1 ⊆ CSCA(D1) with |m1| > |m2|, where m2 :=
π(m1). We now construct a counterexample r on R by using the subset construction for
M2 \m2, but again using an extended set of constraints

Σ′ := Σ ∪ {Y → R | Y ∈ m1}
This makes all elements in m1 keys of R w.r.t. Σ′, and by Lemma 4.35 we still have
Σ′ 2 X → R for all X ∈ M2 \m2. Then by Lemma 4.10 we have |r[m1]| = |m1| · |r| and
|r[m2]| = |m2| · |r|. By Theorem 4.25 the number |r| of tuples in r is at least k times larger
than the number of tuples in r[X], for any X ∈ M2 \m2. By choosing k large enough we
get

|r[M2 \m2]| < |r|
This gives us

|r[M2]| = |r[m2]|+ |r[M2 \m2]|
< |m2| · |r|+ |r|
≤ |m1| · |r|
= |r[m1]|
≤ |r[M1]|

which shows that D1 does not dominate D2.

In the last theorem we restricted ourselves to functional dependencies. This is because
it does not hold in the presence of multi-valued or join dependencies, as the following
example shows.

Example 4.10. Let R, Σ,D1,D2 be as follows:

R = ABC, Σ = {A ³ B},
D1 = {AB, AC},D2 = {ABC, A}

It is easy to see that D1 does not strongly csc-dominate D2 w.r.t. the attribute A:

CSCA(D1) = {AB, AC}
CSCA(D2) = {ABC,A}

109

It is clear that D1 dominates D2 w.r.t. B and C. To show domination w.r.t. attribute
count, it thus suffices to prove that for every relation r on R we have

countA(r[D1]) ≤ countA(r[D2])

To do so, we partition r into disjoint relations ri with |ri[A]| = 1 and ri[A] 6= rj[A] for
i 6= j. Then for each subschema R′ of R containing A (i.e., all schemas in D1,D2), r[R′]
is the disjoint union of the ri[R

′], and thus

countA(r[D1/2]) =
∑

countA(ri[D1/2])

Therefore we only need to show

countA(ri[D1]) ≤ countA(ri[D2])

for all relations ri. Note that A ³ B still holds for all ri, and thus

ri[BC] = ri[B] ./ ri[C]

Abbreviating the cardinalities of ri[B], ri[C] with CB, CC we obtain

|ri[AB]| = CB

|ri[AC]| = CC

|ri[ABC]| = CB · CC

|ri[A]| = 1

This gives us

countA(ri[D2])− countA(ri[D1]) = CB · CC − (CB + CC) + 1

= (CB − 1) · (CC − 1)

≥ 0

which shows that D1 dominates D2 w.r.t. attribute count, even though D1 does not
strongly csc-dominate D2.

It is an open question how domination w.r.t. size or attribute count can be character-
ized syntactically in the presence of functional and join dependencies.

4.3 Relationship to other Normal Forms

A number of normal forms for characterizing well designed relational databases have
been proposed, depending on the types of integrity constraints given. For functional
dependencies, BCNF and 3NF are the most popular ones. 4NF [15] is an extension of
BCNF for functional and multivalued dependencies. For functional and join dependencies
4NF has been extended to PJ/NF [16], 5NF [33, 43] and KCNF [44]. The last normal
form, KCNF, will be of particular interest to us.

Definition 4.37. [44] Let R be a schema with functional and join dependencies Σ. Then
R is in Key-Complete Normal Form (KCNF), if for every join dependency ./ [R1, . . . , Rn]
implied by Σ, the keys among R1, . . . , Rn contain all attributes in R. That is, we have

R =
⋃
{Ri ∈ ./ [R1, . . . , Rn] | R∗

i = R}

110

Note that in the case where Σ contains only functional and multivalued dependencies,
KCNF is equivalent to 4NF, and when Σ contains only functional dependencies KCNF is
equivalent to BCNF [44].

Given a single schema with constraints Σ, the absence of redundancy, as defined in
[1, 44], is precisely characterized by BCNF, 4NF and KCNF. That is, a schema R is free
of redundancy iff it is in BCNF, 4NF or KCNF [1, 44].

While our normal form has been designed to minimize size rather than redundancy,
the intuition is that minimizing one minimizes the other as well. We will show that this
intuition holds in so far, as that a single schema is in KCNF (and thus free of redundancy)
iff it is in DNF among all lossless decompositions. Thus lossless DNF can be seen as an
extension of BCNF, 4NF and KCNF.

Recall that a decomposition is in DNF if it is minimal among a given set of ’suitable’
decompositions, and that for each such set we may obtain a different DNF.

Theorem 4.38. Let R be a schema with functional and join dependencies Σ. Then R is
in KCNF iff {R} is in DNF w.r.t. all lossless decompositions of R.

Proof. (1) Let R be in KCNF. Let D = {R1, . . . , Rn} be any lossless decomposition of
R. Then Σ implies the join dependency ./ [R1, . . . , Rn], and since R is in KCNF, every
attribute A ∈ R lies in some Ri which forms a key of R. Thus R ∈ CSCA(D) for all A,
so {R} strongly csc-dominates D. Therefore {R} dominates D by Theorem 4.17. As this
holds for all lossless decompositions D, {R} is in DNF.

(2) Let R not be in KCNF. Then Σ implies a join dependency ./ [R1, . . . , Rn] such
that ⋃

{Ri | Σ ² Ri → R} 6= R

The decomposition D = {R1, . . . , Rn} is lossless, and there exists an attribute A ∈ R
which does not lie in any Ri which forms a key of R. Clearly D weakly csc-dominates
{R}, and since R /∈ CSCA(D) we have that {R} does not weakly csc-dominate D. Thus D
strictly c-dominates {R} by theorems 4.17 and 4.33, showing that {R} is not in DNF.

Note that, while lossless DNF and BCNF are the same for a single schema, they differ
significantly when applied to multiple schemas. We will demonstrate those differences
using a detailed example.

4.3.1 A Detailed Example

A university has oral examinations at the end of each semester, and wants to manage
related data using a relational database. The relevant attributes to be stored are

R = {Student, Course, Chapter, T ime, Room}
Here Chapter denotes a chapter from the course textbook the student will be examined
about. Every student can get examined about multiple chapters, and chapters may vary
for each student. Multiple students can get examined at the same time in the same room,
but the course must be the same. Further constraints are that a student gets examined for
a course only once, and cannot be in multiple rooms at the same time. Those conditions
can be expressed through functional dependencies as follows:

Σ =

{Student, Course} → Time,
{Student, T ime} → Room,
{Time,Room} → Course

111

We are now presented with the task of decomposing R. If it is deemed necessary to
preserve dependencies, a reasonable Boyce-Codd Normal Form decomposition could be
synthesized as follows:

DDP−BCNF =

{Student, Course, T ime},
{Student, T ime,Room},
{Course, T ime, Room},

{Student, Course, Chapter}

This decomposition, however, is not in dependency preserving Domination Normal Form
- it is strictly dominated by the decomposition

DDP−DNF =

{ {Student, Course, T ime, Room},
{Student, Course, Chapter}

}

Note that the latter decomposition is in dependency preserving DNF (although we will
not show this here), but not in BCNF.

If dependencies need not be preserved, we could use the well-known BCNF decompo-
sition algorithm [27, 33, 36] to obtain the following BCNF decomposition (decomposing
first by {Student, Course} → Time, then by {Student, Course} → Room):

DBCNF =

{Student, Course, T ime},
{Student, Course,Room},
{Student, Course, Chapter}

Again, this is strictly dominated by the decomposition DDP−DNF , which is in DNF even
among all lossless decompositions. At first look it might seem that DDP−DNF is strictly
c-dominated by

DDNF =

{Student, T ime,Room},
{Course, T ime,Room},

{Student, Course, Chapter}

A closer look reveals though that both c-dominate each other, since the attribute Course
already appears in the key schema {Student, Course, Chapter} in both cases. The latter
decomposition is both in DNF and BCNF. The decomposition

D′
DP−DNF =

{ {Student, Course, T ime, Room},
{Student, T ime,Chapter}

}

however, while in dependency preserving DNF, is not in DNF w.r.t. all lossless decompo-
sition, since it is strictly c-dominated by

D′
DNF =

{Student, T ime,Room},
{Course, T ime,Room},
{Student, T ime, Chapter}

Which decomposition to choose is ultimately up to the designer, as storage space and re-
dundancy are not the only design criteria to consider. The schema {Student, Course, Chapter}
appears to be a more intuitive choice than {Student, T ime, Chapter}, although deciding
this requires domain knowledge which is not encoded in the constraints.

112

We conclude this example by providing an instance of R and its projection onto the
schemas appearing in the first four decompositions given. While DNF considers all valid
instances rather than just a given one, we chose an instance which visualizes the relation-
ship between a schema’s closure and the size of relations projected onto it. It is easy to
see that DDP−DNF and DDNF require less storage space than DDP−BCNF and DBCNF .

Student Course Ch. T ime Ro.

J.C. Denton Networks 2 3/10, 1pm 101
J.C. Denton Networks 6 3/10, 1pm 101
J.C. Denton Security 1 4/10, 1pm 104
J.C. Denton Security 5 4/10, 1pm 104
L. Nasher Networks 3 3/10, 1pm 101
L. Nasher Networks 4 3/10, 1pm 101
L. Nasher Security 4 4/10, 1pm 104
L. Nasher Security 7 4/10, 1pm 104
O. Shrek Networks 2 3/10, 1pm 101
O. Shrek Networks 8 3/10, 1pm 101
O. Shrek Security 5 4/10, 1pm 104
O. Shrek Security 2 4/10, 1pm 104
M. Smith Security 4 4/10, 2pm 104
M. Smith Security 6 4/10, 2pm 104
M. Anderson Networks 3 3/10, 1pm 101
M. Anderson Networks 5 3/10, 1pm 101
A. Cheng Networks 2 3/10, 1pm 103
A. Cheng Networks 4 3/10, 1pm 103
A. Cheng Security 4 4/10, 2pm 104
A. Cheng Security 5 4/10, 2pm 104
N. Cheng Networks 1 3/10, 1pm 103
N. Cheng Networks 7 3/10, 1pm 103
N. Cheng Security 5 4/10, 2pm 104
N. Cheng Security 6 4/10, 2pm 104
J.Zhao Networks 2 3/10, 1pm 103
J.Zhao Networks 5 3/10, 1pm 103

Student Course Ch.

J.C. Denton Networks 2
J.C. Denton Networks 6
J.C. Denton Security 1
J.C. Denton Security 5
L. Nasher Networks 3
L. Nasher Networks 4
L. Nasher Security 4
L. Nasher Security 7
O. Shrek Networks 2
O. Shrek Networks 8
O. Shrek Security 5
O. Shrek Security 2
M. Smith Security 4
M. Smith Security 6
M. Anderson Networks 3
M. Anderson Networks 5
A. Cheng Networks 2
A. Cheng Networks 4
A. Cheng Security 4
A. Cheng Security 5
N. Cheng Networks 1
N. Cheng Networks 7
N. Cheng Security 5
N. Cheng Security 6
J.Zhao Networks 2
J.Zhao Networks 5

113

Student Course T ime Ro.

J.C. Denton Networks 3/10, 1pm 101
J.C. Denton Security 4/10, 1pm 104
L. Nasher Networks 3/10, 1pm 101
L. Nasher Security 4/10, 1pm 104
O. Shrek Networks 3/10, 1pm 101
O. Shrek Security 4/10, 1pm 104
M. Smith Security 4/10, 2pm 104
M. Anderson Networks 3/10, 1pm 101
A. Cheng Networks 3/10, 1pm 103
A. Cheng Security 4/10, 2pm 104
N. Cheng Networks 3/10, 1pm 103
N. Cheng Security 4/10, 2pm 104
J.Zhao Networks 3/10, 1pm 103

Student Course T ime

J.C. Denton Networks 3/10, 1pm
J.C. Denton Security 4/10, 1pm
L. Nasher Networks 3/10, 1pm
L. Nasher Security 4/10, 1pm
O. Shrek Networks 3/10, 1pm
O. Shrek Security 4/10, 1pm
M. Smith Security 4/10, 2pm
M. Anderson Networks 3/10, 1pm
A. Cheng Networks 3/10, 1pm
A. Cheng Security 4/10, 2pm
N. Cheng Networks 3/10, 1pm
N. Cheng Security 4/10, 2pm
J.Zhao Networks 3/10, 1pm

Student T ime Ro.

J.C. Denton 3/10, 1pm 101
J.C. Denton 4/10, 1pm 104
L. Nasher 3/10, 1pm 101
L. Nasher 4/10, 1pm 104
O. Shrek 3/10, 1pm 101
O. Shrek 4/10, 1pm 104
M. Smith 4/10, 2pm 104
M. Anderson 3/10, 1pm 101
A. Cheng 3/10, 1pm 103
A. Cheng 4/10, 2pm 104
N. Cheng 3/10, 1pm 103
N. Cheng 4/10, 2pm 104
J.Zhao 3/10, 1pm 103

Student Course Ro.

J.C. Denton Networks 101
J.C. Denton Security 104
L. Nasher Networks 101
L. Nasher Security 104
O. Shrek Networks 101
O. Shrek Security 104
M. Smith Security 104
M. Anderson Networks 101
A. Cheng Networks 103
A. Cheng Security 104
N. Cheng Networks 103
N. Cheng Security 104
J.Zhao Networks 103

Course T ime Ro.

Networks 3/10, 1pm 101
Security 4/10, 1pm 104
Security 4/10, 2pm 104
Networks 3/10, 1pm 103

4.4 Computing Domination Normal Form

Having defined when schemas are in DNF, we are now looking for an algorithm which,
given a schema R with constraints Σ, computes a decomposition of R which is in DNF. For
this we will restrict ourselves to the case where the only constraints given are functional
dependencies.

114

Lemma 4.39. Let R be a schema with constraints Σ, and D be a decomposition of R. If
D contains two different R1, R2 ∈ D with R∗

1 = R∗
2, then

D′ := D \ {R1, R2} ∪ {R1 ∪R2}

dominates D. If R1 ∩R2 6= ∅, then D′ strictly dominates D.

Proof. For every relation r on R the projections r[R1], r[R2] can be obtained by projecting
from r[R1 ∪R2]. As R1 an R2 are keys of

R1 ∪R2 ⊆ R∗
1 = R∗

2

no tuples are lost in this projection. Thus the size of D and D′ varies by the size for the
values of attributes in R1 ∩R2, as those are stored twice in D.

In chapter 3 we defined equivalence classes for functional dependencies, or equivalently
for schemas. We shall use them again here, and recall the definition.

Definition 4.40. Let R be a schema with constraints Σ and X, Y ⊆ R. We call X and
Y equivalent if X∗ = Y ∗. We say that X is of higher order than Y if X∗ ⊇ Y ∗.

We call two functional dependencies X1 → Y1, X2 → Y2 implied by Σ equivalent if
their left hand sides X1 and X2 are equivalent (and similarly for higher order).

When partitioning a set Σ of FDs into equivalence classes, we denote them by

EQX := {Y → Z ∈ Σ | Y ∗ = X∗}

and call X∗ the closure of EQX .

This groups schemas and functional dependencies into equivalence classes. As there is
an obvious correspondence between equivalence classes of schemas and those of functional
dependencies, we will not always distinguish between them, and will compare equivalence
classes w.r.t. higher order a well.

When searching for a DNF decomposition, Lemma 4.39 tells us that it suffices to only
consider decompositions which contain at most one schema for each equivalence class of
schemas.

Definition 4.41. Let D be a decomposition of R and X ⊆ R. We define the higher order
schemas and higher order attributes of X in D as

HOSX(D) := {Rj ∈ D | X∗ ⊆ R∗
j}

HOAX(D) :=
⋃

HOSX(D)

Similarly, the strictly higher order schemas and strictly higher order attributes of X in D
are

SHOSX(D) := {Rj ∈ D | X∗ (R∗
j}

SHOAX(D) :=
⋃

SHOSX(D)

115

Lemma 4.42. Let D1,D2 be two decompositions of R. Then D1 weakly csc-dominates D2

iff for every schema X ∈ D1 we have

X ⊆ HOAX(D2)

Proof. (1) By definition D1 weakly csc-dominates D2 iff for every attribute A ∈ R and
every R∗

1 ∈ CSCA(D1) there exists R∗
2 ∈ CSCA(D2) with R∗

1 ⊆ R∗
2. In other words, for

every pair (A,R1) with A ∈ R1 ∈ D1 there exists R2 with A ∈ R2 ∈ D2 and R∗
1 ⊆ R∗

2.
(2) Furthermore we have X ⊆ HOAX(D2) for all X ∈ D1 iff for every pair (A,X)

with A ∈ X ∈ D1 there exists Y ∈ HOSX(D2) with A ∈ Y , that is Y with A ∈ Y ∈ D2

and X∗ ⊆ Y ∗.
Using (1) and (2) together (with X = R1 and Y = R2) we obtain the claim.

Definition 4.43. Let R be a schema with FDs Σ, and D a set of subschemas of R. We
denote the set of all FDs in Σ which lie in schemas in D by

Σ[D] :=
⋃

Rj∈D
Σ[Rj]

4.4.1 Dependency Preserving DNF

We are now able to construct an algorithm to compute a DNF decomposition for the case
where Σ contains only functional dependencies, and where we consider only lossless and
dependency preserving decompositions. For this, we recall the definition and properties
of partial covers from sections 3.1 and 3.2.1, rephrased slightly to suit our needs.

Definition 4.44. Let Σ be a set of FDs, and EX ⊆ Σ be an equivalence class of Σ. A
set C ⊆ Σ∗ is a partial cover of EX (w.r.t. Σ) if

C[X∗] ∪ (Σ \ EX)

is a cover of Σ.

Lemma 4.45. Let Σ be a set of FDs, and let EQ be the partition of Σ into equivalence
classes. Then a set C of FDs is a cover of Σ iff C is a partial cover (w.r.t. Σ) for all
equivalence classes EQj ∈ EQ.

Lemma 4.46. Let R be a schema with FDs Σ, and D a dependency preserving decompo-
sition of R. Let further EQX be an equivalence class of Σ. Then

Σ∗a[HOSX(D)] ⊆ Σ∗a[HOAX(D)]

each form a partial cover of EQX .

Proof. Since D is dependency preserving, Σ∗a[D] must form a cover of Σ, and thus a
partial cover of EQX . By Definition 4.44 the only FDs of interest for forming a partial
cover of EQX are those LHS-equivalent to the FDs in EQX . All of them lie in schemas
Rj with X∗ ⊆ R∗

j , so
Σ∗a[{Rj ∈ D | X∗ ⊆ R∗

j}]
already forms a partial cover of EQX .

We use this to synthesize a dependency preserving decomposition as follows.

116

Algorithm “dependency preserving DNF decomposition”

INPUT: schema R, canonical cover Σ
OUTPUT: decomposition D in DNF

D := ∅
if Σ contains no key dependencies then

add minimal key Rkey of R to D
partition Σ into equivalence classes EQ
while EQ 6= ∅ do

pick maximal EQj ∈ EQ and remove it from EQ
Rj := closure of FDs in EQj

AD := SHOARj
(D)

first for all A ∈ Rj \ AD and then for all A ∈ Rj ∩ AD do
if Σ∗a[D ∪ {Rj \ A}] is a partial cover of EQj then

Rj := Rj \ A
end
if Rj 6= ∅ then
D := D ∪ {Rj}

end

Theorem 4.47. Algorithm “dependency preserving DNF decomposition” returns a loss-
less, dependency preserving DNF decomposition of R.

Proof. (1) We first show that D is dependency preserving and lossless. This is the case iff
Σ∗a[D] is a cover of Σ, and D contains a key of R. If Σ contains no key dependency, then
a minimal key Rkey of R is added to D. Otherwise it suffices to show that Σ∗[D] is a cover
of Σ, since this implies that D contains a key of R. In each iteration of the while loop,
it is ensured that for the decomposition D computed so far, Σ∗[D] forms a partial cover
for the equivalence classes removed from EQ. After processing all equivalence classes, we
therefore obtain a decomposition for which Σ∗[D] covers Σ.

It remains to show that D is not strictly dominated or c-dominated by any other
lossless and dependency preserving decomposition D′ of R.

(2) We start by proving that D′ does not strictly dominate D. Consider the schemas
R1, . . . , Rn ∈ D (including Rkey if it was added) in the order as they were added to D (with
indices describing this order). Let Rk be the first such schema which is not contained in
D′ (if all Rj are contained in D′ then clearly D dominates D′), and C := R∗

k its closure.
By Lemma 4.46 the set

Σ∗[HOSC(D′)]

forms a partial cover of EQk. Let further

H ′
k :=

⋃
(HOSC(D′) \ {R1, . . . , Rk−1})

so that Σ∗[{R1, . . . , Rk−1} ∪H ′
k] forms a partial cover of EQk. Since Rk was constructed

as minimal such that Σ∗[R1, . . . , Rk] forms a partial cover of EQk, H ′
k (Rk cannot hold.

If Hk = Rk then all schemas in HOSC(D′) \ D must be of order EQk. By Lemma 4.39

117

we may assume that this does not happen, so Hk * Rk. Thus there exists at least one
attribute A which lies in some schema

R′
A ∈ HOSC(D′) \ {R1, . . . , Rk−1}

but not in Rk.
Consider the containing schema closures CSCA(D) and CSCA(D′). If D′ were to

dominate D, then CSCA(D′) would strongly inclusion dominate CSCA(D). Equiva-
lently, CSCA(D′ \ {R1, . . . , Rk−1}) would have to strongly inclusion dominate CSCA(D \
{R1, . . . , Rk−1}). However, we have

R′∗
A ∈ CSCA(D′ \ {R1, . . . , Rk−1})

but no schema in CSCA(D \ {R1, . . . , Rk−1}) includes R′∗
A. This is a contradiction, which

shows that D′ does not dominate D.
(3) Finally, we need to show that D′ does not strictly c-dominate D. Assume the

contrary, so that by Lemma 4.42 we have for all R′ ∈ D′ that

R′ ⊆ HOAR′(D),

and there exist a schema Rw ∈ D for which

Rw * HOARw(D′)

Let Rw be the first such schema in the sequence of schemas R1, . . . , Rn ∈ D, and let
C := R∗

w be its closure. Then for every Rj ∈ SHOSC(D) we get

Rj ⊆ HOARj
(D′) ⊆ SHOAC(D′)

and thus
SHOAC(D) ⊆ SHOAC(D′)

Inclusion in the opposite direction holds by similar argument, showing equivalence:

SHOAC(D) = SHOAC(D′)

This attribute set is computed as the set AD during the construction of Rw: we have

AD = SHOAC({R1, . . . , Rw−1}) = SHOAC(D) = SHOAC(D′)

Since Rw * HOARw(D′) ⊇ AD we have Rw * AD. As we tried removing attributes
outside AD first when constructing Rw, the set

Σ∗[AD] = Σ∗[SHOAC(D′)]

cannot form a partial cover of EQw. By Lemma 4.46 the set

Σ∗[HOAC(D′)]

does form a partial cover of EQk, so D′ must contain at least one schema R′
w with

R′∗
w = C. By Lemma 4.39 we may assume that R′

w is the only such schema in D′. We
have by assumption that

R′
w ⊆ HOAC(D) = SHOAC(D) ∪Rw = AD ∪Rw

118

and thus
R′

w \ AD ⊆ Rw \ AD

Furthermore, we can split HOSC(D′) into SHOSC(D′) and R′
w, and get (using Lemma

4.46 once more) that

Σ∗[AD ∪R′
w] ⊇ Σ∗[SHOSC(D′) ∪ {R′

w}] = Σ∗[HOSC(D′)]

must be a partial cover of EQw. However, by trying to remove attributes not in AD first,
we constructed Rw such that Rw \AD is minimal with Σ∗[AD ∪Rw] being a partial cover
for EQw (note that Σ∗[{R1, . . . , Rw−1}] ⊆ Σ∗[AD]) . Thus R′

w\AD cannot be a true subset
of Rw \ AD, which gives us

R′
w \ AD = Rw \ AD

But this means that

Rw ⊆ R′
w ∪ AD = R′

w ∪ SHOAC(D′) = HOAC(D′)

which contradicts our initial assumption for Rw.

4.5 Combining Normal Forms

While a decomposition into DNF minimizes storage space, other classical normal forms
such as BCNF (for multiple schemas) offer other benefits, such as e.g. fast checking
whether the given FDs hold [27]. We are therefore interested in the possibility of achieving
both normal forms at the same time, and thus benefitting from both.

4.5.1 DNF and BCNF

Dependency preserving DNF and BCNF cannot always be combined - dependency pre-
serving BCNF decompositions are known to not always exist, and deciding whether one
exists is NP-hard [5]. We are now looking for an algorithm to decide whether a schema R
with set of FDs Σ has a dependency preserving DNF decomposition D, for which every
schema Rj ∈ D is in BCNF. Furthermore, the algorithm should find such a decomposition
D if it exists.

Note that algorithm “dependency preserving DNF decomposition” only produces de-
compositions which contain at most one schema for each equivalence class. This was
motivated by Lemma 4.39. However, when looking for BCNF as well, we must con-
sider decompositions which contain multiple schemas per equivalence class (i.e., multiple
schemas with the same closure).

Example 4.11. Let R = ABCDEFG with constraints

Σ =

AB → C, DE → F,
DF → AG,AG → DF,
EF → BG,BG → EF,
AC → DG, DG → AC,
BC → EG, EG → BC

Then R has a dependency preserving DNF and BCNF decomposition:

D = {ABC, DEF, ADFG, BEFG,ACDG, BCEG}

119

Note though that D has two key schemas: ABC and DEF . Joining these two schemas
leads to a decomposition

D′ = {ABCDEF, ADFG, BEFG,ACDG, BCEG}
which dominates D (and vice versa) and thus is also in dependency preserving DNF.
However, D′ is no longer in BCNF.

The general idea for finding a dependency preserving DNF decomposition which is
also in BCNF, is based on the results of chapter 3. We compute all canonical covers,
and for each canonical cover C we generate all minimal (w.r.t. domination/c-domination)
decompositions which preserve C. By “preserve” we mean that each FD X → A ∈ C lies
in some schema Rj ⊇ XA. If a dependency preserving DNF and BCNF decomposition
exists, it will be among them. While this general idea is not very efficient, we will optimize
it in several ways.

First, we will show that for a given canonical cover C, it suffices to consider only one
particular decomposition which preserves C.

Definition 4.48. For a FD X → Y we call XY the schema induced by X → Y . For a
set of FDs Σ we call

H = {XY | X → Y ∈ Σ}
the hypergraph induced by Σ. The maximal connected components of H partition its
support (cf. section 3.1)

ϑH =
⋃
H

We call ϑH the schema induced by Σ, and the maximal connected components ofH (which
we regard as a set of schemas) the schema partition induced by Σ.

We will generate a decomposition which preserves a particular canonical cover Σ as
follows. We first partition Σ into equivalence classes.We then preserve each equivalence
class ΣX by adding the schema partition induced by ΣX to the decomposition.

Example 4.12. Consider again R = ABCDEFG from example 4.11 with constraints

Σ =

AB → C, DE → F,
DF → AG,AG → DF,
EF → BG,BG → EF,
AC → DG, DG → AC,
BC → EG, EG → BC

To preserve Σ we need to preserve (in particular) the partial cover of EQR

ΣR = {AB → C, DE → F}
The hypergraph induced by ΣAB is

H = {ABC, DEF}
which is also the schema partition induced by ΣR, while

ϑH = ABCDEF

is the schema induced by ΣR. We add the schemas ABC, DEF to our decomposition,
rather than the schema ABCDEF , because ABC and DEF are in BCNF.

120

Definition 4.49. Let R be a schema with FDs Σ, and EQ the partition of Σ into equiv-
alence classes. For each eq ∈ EQ let ϑeq be the schema induced by eq. Then we call

D1 := {ϑeq | eq ∈ EQ}

the principal decomposition induced by Σ, and

D2 :=
⋃

eq∈EQ

{schema partition induced by eq}

the connected component decomposition induced by Σ.

We will now show that it suffices to consider only the decompositions described above.
For the following lemmas it is important to note the subtle difference between a depen-
dency preserving decomposition of (R, Σ), and a decomposition of R which preserves Σ:
A dependency preserving decomposition only needs to preserve a cover of Σ, not Σ itself.

Lemma 4.50. Let R be a schema with FDs Σ. Then every BCNF decomposition D′ which
preserves Σ is dominated by the principal decomposition D induced by Σ.

Proof. Let D′ be any BCNF decomposition which preserves Σ, and A an attribute in R.
By Theorem 4.17 strong csc-domination implies domination. Thus it suffices to show that
there exists an injective function f , which maps every schema ϑ ∈ D with A ∈ ϑ to a
schema ϑ′ ∈ D′ with A ∈ ϑ′ and ϑ∗ ⊆ ϑ′∗.

Now let ϑ ∈ D with A ∈ ϑ. By construction of D there must exists a FD X → Y ∈ Σ
with A ∈ XY and XY ∗ = ϑ∗. Since D′ preserves Σ, there exists a schema ϑ′ ∈ D′ with
XY ⊆ ϑ′. Thus we have A ∈ ϑ′ and ϑ∗ = XY ∗ ⊆ ϑ′∗, so we let f map ϑ to ϑ′.

It remains to show that the function f constructed above is injective. As D is in
BCNF, and X → Y is contained in ϑ′, we have XY ∗ = ϑ′∗, and thus ϑ∗ = ϑ′∗. Since D
contains only one schema per equivalence class, f is injective.

Note that the principal and connected component decompositions are not lossless if Σ
contains no key FD. In order to make them lossless, we need to add a minimal key. We
consider this situation next.

Corollary 4.51. Let R be a schema with FDs Σ, such that Σ contains no key FDs. Let D
be the principal decomposition induced by Σ. Then for every lossless BCNF decomposition
D′ which preserves Σ, there exists a minimal key schema Rkey such that D′ is dominated
by D ∪ {Rkey}.

Proof. Since D′ is lossless, it contains a key schema R′
key by Lemma 2.1. Since D′ is in

BCNF, R′
key preserves no FDs in Σ, so D′ \ {R′

key} still preserves Σ. Thus D dominates
D′ \ {R′

key} by Lemma 4.50. It follows that for every minimal key schema Rkey ⊆ R′
key

the decomposition D ∪ {Rkey} dominates D′.

We are now ready to show that for finding a dependency preserving DNF and BCNF
decomposition, is suffices to consider only connected component decompositions, plus
minimal keys, if needed.

121

Theorem 4.52. Let R be a schema with FDs Σ, such that R has a decomposition in
dependency preserving DNF and BCNF. Then there exists a canonical cover Σ′ of Σ and
a minimal key Rkey of R, such that the following statements hold:

(i) If Σ contains a non-trivial key FD then DΣ′ is a dependency preserving DNF and
BCNF decomposition of R.

(ii) If Σ contains no non-trivial key FD then DΣ′ ∪ {Rkey} is a dependency preserving
DNF and BCNF decomposition of R.

where DΣ′ is the connected component decomposition induced by Σ′.

Proof. Let D be a decomposition of R in dependency preserving DNF and BCNF, which
exists by assumption. Since D is dependency preserving there exists a cover Σ′ of Σ such
that D preserves Σ′. Let Dp

Σ′ be the principal decomposition induced by Σ′.

(i) If Σ contains a non-trivial key FD, then so does Σ′, which makes Dp
Σ′ lossless (and de-

pendency preserving). By Lemma 4.50 Dp
Σ′ dominates D. Since D is in dependency

preserving DNF, the opposite must hold as well, i.e., D dominates Dp
Σ′ .

(ii) If Σ contains no non-trivial key FD, then Σ′ contains no key FD. Then by Corollary
4.51 there exists a minimal key Rkey of R such that Dp

Σ′ ∪{Rkey} dominates D. Now
Dp

Σ′ ∪ {Rkey} is lossless by Lemma 2.1, and dependency preserving. Thus, since D
is in dependency preserving DNF, D dominates Dp

Σ′ ∪ {Rkey}.

It is clear by definition that the principal decomposition Dp
Σ′ , and the connected compo-

nent decomposition DΣ′ induced by Σ′ dominate each other. Thus D dominates DΣ′ and
vice versa, or DΣ′ ∪ {Rkey} and vice versa, for case (i) and case (ii) respectively.

Since D is in dependency preserving DNF, and DΣ′ (or DΣ′ ∪ {Rkey}) is lossless and
dependency preserving and dominates D, the decomposition DΣ′ (or DΣ′ ∪{Rkey}) is also
in dependency preserving DNF. It remains to show that DΣ′ (or DΣ′∪{Rkey}) is in BCNF.
This is trivial for the minimal key Rkey, so we only need to show it for DΣ′ in either case.

We have established that D,DΣ′ and Dp
Σ′ dominate each other. By Theorem 4.36 all

attributes have the same containing schema closures w.r.t. D,DΣ′ and Dp
Σ′ . Thus for every

schema Rj ∈ Dp
Σ′ the schemas in D with the same closure as Rj partition Rj, and similarly

for the schemas in DΣ′ . By construction DΣ′ uses the finest such partitions possible while
preserving Σ′, in particular as least as fine as those of D. Thus every schema in DΣ′ is a
subset of some schema in D. Since D is in BCNF, DΣ′ must be in BCNF as well.

The last theorem allows us to restrict our search for dependency preserving DNF
and BCNF decompositions to connected component decompositions induced by canonical
covers, plus minimal key schemas if needed.

When generating the connected component decomposition DΣ induced by some canon-
ical cover Σ we apply another optimization. DΣ is the disjoint union of several connected
component decompositions, each induced by the partial canonical cover Σ[eq] for some
equivalence class eq of Σ. We thus compute the connected component decompositions in-
duced by partial canonical covers for each equivalence class of Σ∗a individually. These can
then be combined to obtain all connected component decompositions induced by canonical
covers.

122

We now describe an algorithm which is based on our constructions so far.

Definition 4.53. Let ISP be a partial function mapping schemas to sets of schemas.
Then for any set of schemas D we define

ISP (D) := {s ∈ D | ISP (s) undefined} ∪⋃
{ISP (s) | s ∈ D and ISP (s) defined}

We will use this to replace all schemas by their partitions, except for the minimal key
schema Rkey which is added to make the decomposition lossless, if needed, and has no
partition.

Algorithm “dependency preserving DNF and BCNF decomposition”

INPUT: schema R, set of FDs Σ
OUTPUT: decomposition of R in DNF and BCNF

partition Σ∗a into equivalence classes EQ
for each EQj ∈ EQ do

compute CCj, the set of all partial canonical covers on EQj

ISj := ∅ (the induced schemas for EQj)
ISP := ∅ (associated partitions in BCNF)
for each partial canonical cover pc ∈ CCj do

compute the schema partition sppc induced by pc
Rpc :=

⋃
sppc (the schema induced by pc)

ISj := ISj ∪ {Rpc}
if (all schemas in sppc are in BCNF and

ISP does not map Rpc to anything) then
ISP := ISP ∪ {Rpc 7→ sppc}

end
remove all non-minimal (w.r.t. inclusion) schemas from ISj

remove all schemas Rpc from ISj with ISP (Rpc) undefined
end

if EQ contains no key class then
for all minimal keys Rkey of R do

decompose(EQ, {Rkey})
end

else
decompose(EQ, ∅)

123

proc decompose(EQ,D)
if EQ = ∅ then

output ISP (D)
exit

pick maximal EQj ∈ EQ
compute AD := SHOAEQj

(D)
for all Rj ∈ ISj do

if (Rj \ AD minimal with (y c-domination optimal)
EQj[D ∪ {(Rj \ AD) ∪ AD}] partial cover for EQj

and Rj minimal with (y domination optimal)
EQj[D ∪ {Rj}] partial cover for EQj)

then
decompose(EQ \ {EQj},D ∪ {Rj})

end

Theorem 4.54. Algorithm “dependency preserving DNF and BCNF decomposition” out-
puts such a decomposition if one exists.

Proof. (1) Only schema partitions with schemas in BCNF get added to the ISPj, and only
those get added to ISP (D). Thus ISP (D) is in BCNF. For each essential equivalence
class EQj, a set of schemas sp gets added to ISP (D) (first

⋃
sp is added to D and then

replaced), which holds a partial cover for EQj. These partial covers together form a cover
for Σ by Lemma 4.45, thus ISP (D) is dependency preserving. Furthermore, a key schema
is added to ISP (D), either initially or to hold a partial cover for EQkey. Together with
the fact that ISP (D) preserves dependencies, we obtain that ISP (D) is lossless.

It is easy to see that the algorithm’s output ISP (D) and D are equivalent w.r.t.
domination. It thus suffices to show that D is in DNF, which then implies the same for
ISP (D) by definition of DNF. To do this, we will argue that D could have been pro-
duced using algorithm “dependency preserving DNF decomposition”, for which we have
already proven correctness. To keep things readable, we abbreviate algorithm “depen-
dency preserving DNF and BCNF decomposition” by A-DP-DNF-BCNF and algorithm
“dependency preserving DNF decomposition” by A-DP-DNF.

In A-DP-DNF-BCNF a minimal key Rkey is added to D iff EQ contains no key class.
Since EQ (at this time) contains all essential equivalence classes, this condition is equiv-
alent to the corresponding condition in A-DP-DNF that the canonical cover Σ contains
no key FDs.

After that, both algorithms add one schema Rj to D for each essential equivalence class
EQj ∈ EQ, picking maximal classes first. In A-DP-DNF attributes are removed from Rj

as long as Σ∗a[D ∪ {Rj}] is partial cover for EQj, removing attributes in AD first. Only
FDs with LHSs equivalent to FDs in EQj contribute towards a partial cover of EQj, and
since in A-DP-DNF-BCNF the equivalence classes EQj contain all such (atomic) FDs, we
have for every decomposition E :

Σ∗a[E] is a partial cover of EQj iff EQj[E] is

124

As there are no other restrictions on the order in which attributes A are checked for
removal, this can generate any schema Rj for which

Rj \ AD minimal with
EQj[D ∪ {(Rj \ AD) ∪ AD}] partial cover for EQj

and Rj minimal with
EQj[D ∪ {Rj}] partial cover for EQj,

In particular this includes any schema Rj selected by A-DP-DNF-BCNF, as the conditions
are checked in procedure ”decompose”.

(2) It remains to show that our algorithm always finds a dependency preserving DNF
and BCNF decomposition if such a decomposition exists. Our argument is the following:
Algorithm “dependency preserving DNF and BCNF decomposition” computes all partial
canonical covers pc for each essential equivalence class and their induced schema parti-
tions sppc. If we were to check all combinations of them, we would obtain all connected
component decompositions induced by canonical covers of Σ. By Theorem 4.52 some
DP-DNF-BCNF decomposition E would have to be amongst them (we name it E to avoid
confusion with the variable D in the algorithm). Our algorithm does essentially that,
although it applies some optimizations, and we need to argue that none of them prevents
us from finding E (or at least some decomposition in DP-DNF-BCNF).

The first optimization happens when multiple partial canonical covers for an equiva-
lence class EQj induce the same schema but different schema partitions. Here we check
which of those schema partitions are in BCNF, and keep only one of them (if any BCNF
partition exists at all). Neglecting schema partitions not in BCNF has no impact on the
result, since they cannot be part of a BCNF decomposition E . Different partitions of the
same schema dominate each other, since all subschemas in the partition have the same
closure. Thus, while we may not find the decomposition E , we will find a decomposition
E ′ which is equivalent to E w.r.t. domination and thus also in dependency preserving
DNF and BCNF.

The second optimization comes with the line

remove all non-minimal (w.r.t. inclusion) schemas from IS

Let s ∈ IS be non-minimal, i.e., s′ (s for some s′ ∈ IS. Any decomposition containing
s is strictly dominated by a decomposition using s′ instead of s, and thus not in DNF.
Thus removing s from IS does not hinder us in finding E .

The last optimization comes in the form of pruning the search tree with the check

if (Rj \ AD minimal with (y c-domination optimal)
EQj[D ∪ {(Rj \ AD) ∪ AD}] partial cover for EQj

and Rj minimal with (y domination optimal)
EQj[D ∪ {Rj}] partial cover for EQj)

Here we will show that any Rj which do not pass the ”if-condition” cannot lead to a
DP-DNF-BCNF decomposition. This can be argued as follows.

If Rj \ AD is not minimal then we have

R′
j \ AD (Rj \ AD

125

for some R′
j such that

EQj[D ∪ {(R′
j \ AD) ∪ AD}]

forms a partial cover for EQj. But then D ∪ {Rj} is strictly c-dominated by D ∪ {R′
j}

by Theorem 4.33, and this still holds after substituting schemas by their partitions using
ISP or adding schemas (none of those being of higher order than Rj) to obtain a complete
dependency preserving BCNF decomposition. Thus ISP (D∪{Rj}) cannot be completed
to a DP-DNF-BCNF decomposition.

If Rj is not minimal we argue similarly with domination and Theorem 4.36.

We finish by discussing further improvements, which can help to speed up the algo-
rithm. First, we want to stress that the check

and Rj minimal with (y domination optimal)
EQj[D ∪ {Rj}] partial cover for EQj)

in procedure “decompose” is not redundant, despite the removal of all non-minimal Rj

in ISj. The remaining Rj are minimal such that EQj[Rj] forms a partial cover of EQj,
but this is a different condition: While ISP (D) is in BCNF, D need not be, so the FDs
in EQj[D] could contribute towards a partial cover of EQj. However, the check can be
skipped if EQj[D] = ∅, which can be tested quickly.

The partial covers for a minimal equivalence class EQX of FDs all induce the same
schema, namely the closure X∗ for EQX . This can be argued as follows: Only the FDs in
EQX can help in computing the closure of a minimal key of EQX , and every attribute in
X∗ must be part of some FD. Furthermore, X∗ is in BCNF since no FDs Y → A ∈ Σ∗a

with closure Y ∗ (X∗ exist. Thus we do not need to compute the partial canonical covers
on minimal equivalence classes.

Computing the set of all partial canonical covers on an equivalence class EQX directly
can be inefficient. To improve this, we try to partition EQX into smaller autonomous sets
S1, . . . , Sn ⊆ EQX using partial implication cycles as described in section 3.4, and compute
all partial canonical covers on them. We could now obtain the partial canonical covers on
EQX by forming the cross-union of the partial canonical cover sets on S1, . . . , Sn, and then
proceed with computing the induced schema partitions. Instead, we first compute the sets
ISP1, . . . , ISPn of schema partitions induced by the partial canonical covers on S1, . . . , Sn.
Note that different partial canonical covers can (and often do, as our experiments show)
induce the same schema partitions. We then compute the cross-union

HX := ISP1 ∨ . . . ∨ ISPn

which is a set of hypergraphs on R, with each hypergraph corresponding naturally to
one or more partial canonical covers on EQX . It is easy to see that each hypergraph
in HX induces the same schema partitions as the partial canonical covers it corresponds
to. Since the number of hypergraphs in HX can be much smaller than the number of
partial canonical covers on EQX , computing the induced schema partitions from HX can
be much faster.

Finally, we may abort immediately if some ISP |ISj
is empty, since then no partial

dependency preserving BCNF decomposition without duplicate attributes exists for EQj.

126

4.5.2 DNF and EKNF

As dependency preserving BCNF decompositions do not always exist, combining DNF
and BCNF is not always a feasible option. To avoid this problem, or as an alternative
should a dependency preserving BCNF decomposition not exist, one could try to ensure
other normal forms which always allow dependency preserving decompositions. The most
well-known normal form with this property is 3NF. However, as was pointed out in [46],
3NF does not always enforce beneficial decomposition, even though they may not cause
any loss of dependencies. The following example, taken from [46], illustrates this.

Example 4.13. Let R = ABC and Σ = {A → B,B → A}. Then AC and BC are minimal
keys of R, and thus all attributes are prime. Therefore R is already in 3NF, even though
dependency preserving decompositions exist, such as {AB,BC} or {AB,AC}.

As an improvement, the authors suggest a new normal form which is stronger than
3NF but still allows dependency preserving decompositions. They strengthen 3NF by
allowing as RHS of a non-key FD only those prime attributes, which appear in the LHS
of an atomic key dependency. Note that atomic FDs are called elementary in [46].

Definition 4.55. [46] Let R be a schema with FDs Σ. A FD X → A is called elementary
if Σ∗ contains no FD X ′ → A with X ′ (X. A key is elementary if it forms the LHS of
an elementary FD. An attribute is an elementary key attribute if it lies in an elementary
key of R.

Definition 4.56. [46] Let R be a schema with FDs Σ. Then R is in elemental key normal
form (EKNF) if for every non-trivial FD X → A on R

(a) X is a key of R, or

(b) A is an elementary key attribute for R.

Note that the schema R from example 4.13 is not in EKNF, since neither A nor B
are elementary key attributes. Thus EKNF may enforce useful decomposition which 3NF
does not.

As it turns out, algorithm “dependency preserving DNF decomposition” already pro-
duces a decomposition into EKNF.

Lemma 4.57. Let R be a single schema with FDs Σ. If R is in dependency preserving
DNF, then it is also in EKNF.

Proof. Assume that R is not in EKNF. Then there exists a FD X → A ∈ Σ∗a such that
X is not a key of R, and A does not lie in the LHS of any key FD in Σ∗a. Furthermore,
R is strictly c-dominated by the decomposition

D := {R \ A} ∪ {S (R | S is not a key of R}

since A does not lie in R \ A, which is the only key schema in D.
It remains to show that D is dependency preserving. Clearly the only FDs in Σ∗a

which do not lie in Σ∗[D] are key FDs containing A. They must be of the form Y → A,
since A does not lie in the LHS of any key FD. However, the FDs Y → X and X → A
both lie in Σ∗[D], and together they imply Y → A.

127

Theorem 4.58. Let D be a decomposition produced by algorithm “dependency preserving
DNF decomposition”. Then every schema RX ∈ D is in dependency preserving DNF w.r.t.
Σ∗[RX].

Proof. Let DX be any dependency preserving decomposition of RX . Then DX is domi-
nated by the single schema

R′
X :=

⋃
{Rj ∈ DX | Rj is a key of RX}

Clearly R′
X preserves all key FDs in Σ∗[D]. Thus EQX [DX] ⊆ EQX [R′

X], so EQX [R′
X]

implies EQX [RX]. However, RX has been constructed minimal such that EQX [RX] has
some partial cover property. Thus R′

X = RX , which shows that RX dominates every
dependency preserving decomposition DX . It follows that RX is in dependency preserving
DNF.

Corollary 4.59. Algorithm “dependency preserving DNF decomposition” produces a de-
composition into EKNF.

Proof. Follows immediately from the last lemma and theorem.

We note that this result is only due to our construction method, i.e., dependency
preserving DNF does not imply EKNF in general.

Example 4.14. Let R = ABCD and Σ = {A → B, B → C,CD → A}. Then the
decomposition D = {ABC,ACD} is in dependency preserving DNF (note that it is
not strictly c-dominated by {AB,BC, ACD} since C already appears in the key schema
ACD). However, D is not in EKNF, since ABC contains B → C which violates EKNF.

One could say that the benefit of EKNF is that it enforces ”locally” well-designed
schemas, something which may not be forced by DNF if this “local optimization” does
not provide a significant benefit for the overall size of the decomposition. The same holds
true for BCNF or other “local” normal forms, i.e., normal forms which consider only a
single schema.

128

Chapter 5

Summary

We will briefly summarize the main results we obtained, and related problems which still
remain open.

5.1 Main Results

In chapter 2 we developed algorithms for computing a dependency preserving BCNF
decomposition. The main result was an “linear resolution” algorithm for computing the
atomic closure Σ∗a for a set of functional dependencies Σ. While Σ∗a can be exponential
in Σ, we identified polynomial cases and showed that for finding a dependency preserving
BCNF decomposition, it suffices to compute a subset of Σ∗a. Finally, we demonstrated
how the results can be extended to a complex-valued data model.

The “linear resolution” algorithm was then used in chapter 3 to compute the set of all
canonical covers CC(Σ). For that we showed how hypergraphs can be decomposed using
autonomous sets, which led to an efficient representation of CC(Σ). Perhaps more im-
portant than the actual algorithm, we obtained insights into how functional dependencies
interact. In particular, Theorem 3.36 allows us to split the task of creating a canonical
cover into smaller, independent tasks of creating partial covers. Our theory of autonomous
sets may well have applications in other disciplines.

In chapter 4 we returned to database normalization by defining a new normal form
“DNF” and providing algorithms for computing decompositions into DNF. This new nor-
mal form was characterized both semantically and syntactically, and one of the main
difficulties was in showing that the characterizations match. We established that in some
sense, DNF is the proper generalization of existing normal forms, in particular BCNF,
onto multiple schemas. Finally, we showed how dependency preserving DNF decomposi-
tions can be computed, and how dependency preserving DNF and BCNF can be obtained
simultaneously.

Overall, this work focused on computing good schema decompositions. We provided
characterizations of such “good” decompositions and practical algorithms to obtain them.
The results offer new insights, in particular into the interaction of functional dependencies,
and are of immediate practical use in creating automated design tools.

129

5.2 Open Problems

We will point out some open problems related to our work, in the order as they appear.
The results we obtained are based on the relational data model. In section 2.3 we

discussed how the main results of chapter 2 can be extended to complex-valued data
models. We believe that most (if not all) of the work done here can be extended to
complex-valued data models, including XML-databases, in a similar fashion, though we
did not investigate this. Other extensions to the classic relational model may also be
of interest for further research. In particular, FDs behave differently in the presence of
null values, which may lead to quite different results for derivation and normalization
problems.

In section 3.5 we discussed how we could restrict ourselves to deriving essential FDs
when computing all canonical covers. This could be of use when trying to find dependency
preserving decompositions, as we did in chapter 2. The problem here lies in testing whether
a FD is critical, and it is not clear how this can be done efficiently, having computed only
essential FDs. In some cases, the work done by Gottlob [18] might offer an efficient
solution.

The connection between the semantic and syntactic characterizations of DNF has
been established using theorems 4.33 and 4.36. However, Theorem 4.36 is restricted
to functional dependencies, and does not hold in the presence of multivalued or join
dependencies. It would be interesting to know what the correct syntactic characterization
of DNF would be in such cases.

Also, our assumption that all domains are infinite and unbounded is not always real-
istic. It is not clear yet how DNF behaves for finite or bounded domains.

Our definition of DNF focuses on minimizing size, with the intuition that this could
minimize redundancy and update anomalies as well. Alternatively one could attempt to
minimize redundancy or update anomalies directly, and it would be interesting to see
whether the results are the same. Additionally, one could try to achieve other desirable
properties for a decomposition, such as e.g. acyclicity [6].

While we have an algorithm for computing a decomposition into dependency preserving
DNF, we currently lack such an algorithm for lossless DNF.

Finally, it is unclear how to test whether a given decomposition is in DNF, and how
difficult such a test is. We suspect that it is at least co-NP hard.

130

Index

3NF, 6

algorithm
3NF Synthesis, 7
BCNF Decomposition, 7
closure, 5
d.p. DNF and BCNF decomposition,

120
d.p. DNF decomposition, 114
divide and resolve, 70
essential linear resolution, 86
least critical cover synthesis, 28

revised, 31
linear NA-resolution, 43
linear resolution, 16

revised, 18
partial implication partitioning, 79
recursive autonomous partitioning, 61
substitute FD, 30
update atomic closure, 23

armstrong axioms, 4
associated set, 98
atomic closure, 12
atomic implication closure, 77
attribute, 3

cyclic, 33
depending, 98
extraneous, 15
flat, 36
nested, 36

basis, 41
completion, 41
representable, 41
unitary, 40

prime, 6, 83
autonomous set, 55, 62

BCNF, 6

c-domination, 91–93
cartesian, 80

complete, 4
connected components, 57
containing schema closures, 93
cover, 4

canonical, 12
LR-reduced, 72
partial, 63, 113
relative, 64

csc-domination, 94
cycle, 32
cyclic closure, 33

decomposition
connected component, 118
lossless, 5
principal, 118

dependency
functional, 4

adjacent, 76
atomic, 12, 41
base, 14
critical, 26, 46
derived, 14
essential, 80
essentially derivable, 82
forced, 80
maximal atomic, 41
neighborhood, 80
redundant, 4
singular, 12, 41
standard form, 41
substituting, 14
trivial, 4
unitary, 20

join, 5
multivalued, 5

dependency basis, 101
derivation trees, 4
domain, 3
domination, 81, 91–93

131

domination normal form, 91

edge
partial, 59

elemental key normal form, 124
elementary, 124
equivalence, 63, 64, 112
essential closure, 81
essentially cartesian closure, 81

faithful, 6
finite implication, 4
fixed parameter tractable, 22

hypergraph, 54
simple, 54

implication cover, 67
relative, 67

implication dependency, 67
inclusion-domination, 94
integrity constraints, 3
isolated set, 57

join, 5, 38
lossless, 6

k-mapping, 97
k-reducing, 96
KCNF, 107

LHS-minimal, 7
LHS-reduced, 7
LHS-restricted, 49
lifting, 97
LM-resolution, 15

meet, 38
minimal autonomous sets, 56
minimal cover, 18
minimal isolated set, 57

partial determination, 32
partial implication, 76, 77
projection, 6, 53

relation, 3
relativation, 65
representation basis, 40
resolution:linear, 15

restricted, 49

schema, 3
closed, 99
induced, 117
induced partition, 117
open, 99

sound, 4
subset construction

for functional dependencies, 99
generalized, 102

superedge, 59
partial, 59

support, 54
synchronization hypergraph, 100

transversal, 57, 62

width, 21

132

Bibliography

[1] M. Arenas and L. Libkin. An information-theoretic approach to normal forms for
relational and XML data. In PODS, pages 15–26, 2003.

[2] W. W. Armstrong. Dependency structures of data base relationships. In IFIP
Congress, pages 580–583, 1974.

[3] G. Ausiello, A. D’Atri, and D. Saccà. Graph algorithms for functional dependency
manipulation. J. ACM, 30(4):752–766, 1983.

[4] G. Ausiello, A. D’Atri, and D. Saccà. Minimal representation of directed hypergraphs.
SIAM J. Comput., 15(2):418–431, 1986.

[5] C. Beeri and P. A. Bernstein. Computational problems related to the design of normal
form relational schemas. ACM Transactions on Database Systems, 4(1):30–59, 1979.

[6] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. J. ACM, 30(3):479–513, 1983.

[7] C. Berge. Hypergraphs: Combinatorics of Finite Sets. Elsevier Science Pub. Co.,
1989.

[8] J. Biskup. Inferences of multivalued dependencies in fixed and undetermined uni-
verses. Theor. Comput. Sci., 10:93–105, 1980.

[9] J. Biskup. Achievements of relational database schema design theory revisited. In
L. Libkina and B. Thalheim, editors, Semantics in Databases, volume 1358 of Lecture
Notes in Computer Science, pages 29–54. Springer, 1995.

[10] J. Biskup, U. Dayal, and P. A. Bernstein. Synthesizing independent database
schemas. In SIGMOD Conference, pages 143–151, 1979.

[11] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion dependencies and
their interaction with functional dependencies. In PODS ’82, pages 171–176, New
York, NY, USA, 1982. ACM Press.

[12] E. F. Codd. Further normalization of the data base relational model. IBM Research
Report, San Jose, California, RJ909, 1971.

[13] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

133

[14] R. Fadous and J. Forsyth. Finding candidate keys for relational data bases. In W. F.
King, editor, Proceedings of the 1975 ACM SIGMOD International Conference on
Management of Data, San Jose, California, May 14-16, 1975, pages 203–210. ACM,
1975.

[15] R. Fagin. Multivalued dependencies and a new normal form for relational databases.
ACM Trans. Database Syst., 2(3):262–278, 1977.

[16] R. Fagin. Normal forms and relational database operators. In P. A. Bernstein, editor,
SIGMOD Conference, pages 153–160. ACM, 1979.

[17] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-complete
graph problems. Theor. Comput. Sci., 1(3):237–267, 1976.

[18] G. Gottlob. Computing covers for embedded functional dependencies. In PODS,
pages 58–69, 1987.

[19] G. Gottlob. On the size of nonredundant FD-covers. Inf. Process. Lett., 24(6):355–
360, 1987.

[20] G. Gottlob, R. Pichler, and F. Wei. Tractable database design through bounded
treewidth. In PODS, pages 124–133, 2006.

[21] F. Harary. Graph Theory. Addison-Wesley, 1995.

[22] J. Järvinen. Dense families and key functions of database relation instances. In
R. Freivalds, editor, FCT, volume 2138 of Lecture Notes in Computer Science, pages
184–192. Springer, 2001.

[23] P. Kandzia and M. Mangelmann. On covering Boyce-Codd normal forms. Inf. Pro-
cess. Lett., 11(4/5):218–223, 1980.

[24] H. Koehler. Finding faithful Boyce-Codd normal form decompositions. In S.-W.
Cheng and C. K. Poon, editors, AAIM, volume 4041 of Lecture Notes in Computer
Science, pages 102–113. Springer, 2006.

[25] H. Koehler. Domination normal form: decomposing relational database schemas. In
ACSC ’07: Proceedings of the thirtieth Australasian conference on Computer science,
pages 79–85, Ballarat, Australia, 2007. Australian Computer Society, Inc.

[26] J. Lechtenbörger. Computing unique canonical covers for simple FDs via transitive
reduction. Inf. Process. Lett., 92(4):169–174, 2004.

[27] M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springer, 1999.

[28] E. A. Lewis, L. C. Sekino, and P. D. Ting. A canonical representation for the
relational schema and logical data independence. In IEEE COMPSAC, pages 276–
280, 1977.

[29] S. Link. Dependencies in Complex-valued Databases. PhD Thesis, 2004.

134

[30] S. Link. On multivalued dependencies in fixed and undetermined universes. In FoIKS,
pages 258–277, 2006.

[31] C. L. Lucchesi and S. L. Osborn. Candidate keys for relations. Journal of Computer
and System Sciences, 17(2):270–279, 1978.

[32] D. Maier. Minimum covers in the relational database model. Journal of the ACM,
27(4):664–674, 1980.

[33] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[34] M. E. Majster-Cederbaum. Ensuring the existence of a BCNF-decomposition that
preserves functional dependencies in O(n) time. Information Processing Letters,
43(2):95–100, 1992.

[35] H. Mannila and K.-J. Räihä. Design by example: An application of armstrong rela-
tions. J. Comput. Syst. Sci., 33(2):126–141, 1986.

[36] H. Mannila and K.-J. Räihä. The Design of Relational Databases. Addison-Wesley,
1987.

[37] H. Mannila and K.-J. Räihä. Practical algorithms for finding prime attributes and
testing normal forms. In Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, March 29-31, 1989, Philadelphia,
Pennsylvania, pages 128–133. ACM Press, 1989.

[38] S. L. Osborn. Testing for existence of a covering Boyce-Codd normal form. Informa-
tion Processing Letters, 8(1):11–14, 1979.

[39] H. Saiedian and T. Spencer. An efficient algorithm to compute the candidate keys
of a relational database schema. Comput. J., 39(2):124–132, 1996.

[40] R. C. Shock. Computing the minimum cover of functional dependencies. Inf. Process.
Lett., 22(3):157–159, 1986.

[41] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[42] D.-M. Tsou and P. C. Fischer. Decomposition of a relation scheme into Boyce-Codd
normal form. In ACM annual conference, pages 411–417, 1980.

[43] M. W. Vincent. A corrected 5NF definition for relational database design. Theor.
Comput. Sci., 185(2):379–391, 1997.

[44] M. W. Vincent. Redundancy elimination and a new normal form for relational
database design. In Semantics in Databases, volume 1358 of Lecture Notes in Com-
puter Science, pages 247–264. Springer, 1998.

[45] J. Wang and R. W. Topor. Removing XML data redundancies using functional and
equality-generating dependencies. In H. E. Williams and G. Dobbie, editors, ADC,
volume 39 of CRPIT, pages 65–74. Australian Computer Society, 2005.

[46] C. Zaniolo. A new normal form for the design of relational database schemata. ACM
Trans. Database Syst., 7(3):489–499, 1982.

135

Appendix

Some of the algorithms described in this work have been implemented, and we present
experimental results using randomly generated test data.

Test Data

One issue that always arises in this context is that of using appropriate test data. In our
case, we require relations R and sets of FDs Σ on them.

These were created as follows: For a fixed number k of attributes in R and n FDs in Σ,
we generate n FDs on R independently at random. In that, a FD X → Y is constructed
by independently choosing the attribute sets X, Y ⊆ R. We create an attribute subset
by selecting m attributes uniformly at random. In this we allow duplicates, so that the
resulting set could have cardinality less than m. The probability for m to have value v is
1
2

v
, i.e., there is a chance of 1

2
that m = 1, a chance of 1

4
that m = 2 a.s.o.

Note that this approach favors FDs with small left- and right hand sides, but every
FD X → Y on R with non-empty sets X, Y can potentially be generated.

Algorithms

The following algorithms have been implemented and tested:

• Linear Resolution (for computing atomic closure)

We implemented the revised version from section 2.1.2. This improved performance
slightly, compared to the basic version of the algorithm.

• Least Critical Cover Synthesis (for finding faithful BCNF decomposition)

We implemented the revised version from section 2.2.2. This had a huge impact on
performance in all cases, again compared to the basic algorithm.

• Divide and Resolve (for computing all partial canonical covers)

We used partial implication cycles to find smaller autonomous sets, as described in
section 3.4. This had a huge impact on performance in many cases.

• dependency preserving DNF and BCNF Decomposition

We implemented all the improvements described in section 4.5.1. Computing the
induced schema partitions on the smaller autonomous sets before forming the cross-
union had a huge impact on performance in some cases.

136

Results

The tests are organized by number of attributes k in the relation R and number of FDs
n in the original cover Σ. For each case we ran our algorithms on 1000 test sets of FDs
and recorded the following data:

• size of the atomic closure Σ∗a, measured in number of FDs

• number of canonical covers in CC(Σ)

• number of partial canonical covers per autonomous set (average)

• number of disjoint non-trivial1 autonomous sets found

• time taken for computing:

– atomic closure Σ∗a

– canonical covers CC(Σ) in decomposed form (after computing Σ∗a)

– dependency preserving BCNF decomposition (after computing Σ∗a)

– dependency preserving DNF and BCNF decomposition (after computing CC(Σ))

For purpose of judging runtime, we note that the implementation was in java, and
tests were performed on a 1.8 GHz PC.

We summarize the test results by reporting the mean value for each parameter mea-
sured, i.e., the minimum value x such that at least 50% of the test results are less or equal
to x.

We report the mean instead of e.g. the average, since the parameters measured can
grow exponentially, and do so in some cases. As a result, only the maximal value has a
significant impact on the average. Furthermore, we aborted tests in some cases to avoid
excessive computation time and/or memory problems. Such invalid tests do no pose much
of a problem for measuring the mean values, since we can safely count them as results
larger than the mean (as long as less than 50% of all tests are invalid, which was always
the case).

#Att #FDs #AFDs #CCs #PCCs #Aut tAC tCCs tBCNF tDNF

5 5 6 1 1 4 < 1ms 2ms 1ms 1ms
10 5 10 1 1 6 < 1ms 3ms 1ms 1ms
10 10 26 12 1.4 9 1ms 24ms 1ms 3ms
15 10 37 2 1 13 3ms 20ms 2ms 4ms
15 15 71 284 1.9 17 7ms 144ms 4ms 10ms
20 15 88 18 1.2 21 48ms 98ms 5ms 11ms
20 20 156 10935 3.4 25 62ms 450ms 7ms 36ms
30 15 105 2 1 24 59ms 32ms 6ms 12ms
30 20 222 24 1.1 31 100ms 177ms 9ms 21ms
50 20 198 1 1 36 113ms 88ms 10ms 68ms
50 30 1026 24 1.1 52 826ms 445ms 373ms 664ms

1By trivial we mean autonomous sets for which the empty set is a partial cover.

137

Observations

We shall conclude by noting some observations we made when examining the test results.

• The algorithm “Least Critical Cover Synthesis” performs much faster than suggested
by the complexity bound which we established in section 2.2.2. This appears to be
due to the improvements we made over the basic algorithm. It is not clear whether
the complexity bound established can be improved.

• Algorithm “dependency preserving DNF and BCNF Decomposition” also performed
much faster than we expected. The main reason for this appears to be that back-
tracking after a recursive call of procedure “decompose” is hardly ever necessary.

• In cases where the ratio of FDs over attributes is large, we very often obtained huge
numbers of canonical covers. The reason for this becomes clear when we observe
the asymptotic case, where Σ contains all non-trivial FDs with non-empty LHS.
Then every attribute in R is a key, and Σ∗a is small (quadratic in the number of
attributes k). However, the number of canonical covers becomes hyper-exponential
in the number of attributes. This can be seen as follows: Every canonical cover
corresponds to a minimal strongly connected graph on k vertices. This includes all
directed cycles (among others), and there are (k − 1)! such cycles.

In all examples we observed, where the number of canonical covers was huge, we
found a maximal equivalence class which had a structure very similar to the asymp-
totic case. It thus might be worth investigating how computing all partial canonical
covers on such equivalence classes could be avoided.

138

