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Cenozoic diatreme field in Chubut (Argentina) as
evidence of phreatomagmatic volcanism
accompanied with extensive Patagonian plateau

basalt volcanism?
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In Patagonia, Argentina, at the northern border of the
Patagonian Cenozoic mafic plateau lava fields, newly
discovered diatremes stand about 100 m above the sur-
rounding plain. These diatremes document phreato-
magmatic episodes associated with the formation of the
volcanic fields. The identified pyroclastic and intrusive
rocks are exposed lower diatremes of former phreato-
magmatic volcanoes and their feeding dyvke systems.
These remotely located erosional remnants cut through
Paleozoic granitoids and Jurassic/Cretaceous alternat-
ing siliciclastic continental successions that are rela-
tively easily eroded. Plateau lava fields are generally
located a few hundreds of metres above the highest level
of the present tops of the preserved diatremes suggesting
a complex erosional history and potential interrelation-
ships between the newly identified diatremes and the
surrounding lava fields. Uprising magma from the
underlying feeder dyke into the diatreme root zone
intruded the clastic debris in the diatremes, inflated
them and mingled with the debris to form subterranean
peperite. The significance of identifying diatremes in
Patagonia are twofold: 1) in the syn-eruptive paleo-
environment, water was available in various *“soft-sedi-
ments”, commonly porous, media aquifer sources, and
2) the identified abundant diatremes that form diatreme
fields are good source candidates for the extensive lava
fields with phreatomagmatism facilitating magma rise
with effective opening of fissures before major lava

effusions.

Introduction

The eruption of extensive, large volume basaltic plateau lavas was
one of the most prominent volcanic events that took place during the
Cenozoic geological history of extra-Andean Patagonia (Stern et al.,
1990; D'Orazio et al., 2000; D'Orazio et al., 2001; Gorring and Kay,
2001: Gorring et al., 2003). The most accepted interpretation of this
magmatism relates to the opening of a slab window under this sector
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of South America in response to the subduction of the Chile oceanic
spreading ridge at the Chile Triple Junction (Ramos and Kay, 1992;
Gorring et al., 1997). Large numbers of studies have focused on the
general geological framework and understanding the geochemical
signature of some large volume southern Patagonian volcanic areas
(Figure 1) such as the Pali Aike volcanic field (Skewes and Stern,
1979); Meseta del Lago Buenos Aires (Baker et al., 1981) or the
Estancia Glencross area volcanics (D'Orazio et al., 2001). However,
with the exception of the Pali Aike volcanic field (D'Orazio et al.,
2000; Corbella, 2002; Haller et al., 2005; Haller and Németh, 2006),
we know very little about the volcanism that created such volcanic
fields, especially the physical volcanology of these Patagonian vol-
canic fields.

In spite of the large volumes of many of the Patagonian
Cenozoic volcanics, the source, vent locations and type of volcanic
activity have been largely overlooked or unstudied. Here, we pre-
sent the results of a field study that identified extensive diatreme
fields in Northern Patagonia located near Oligocene to Miocene
plateau-like lava fields, indicating a close spatial relationship
between the two fields. The discovery of diatreme fields in Northern
Patagonia may serve to demonstrate that phreatomagmatic volcan-
ism, driven by magma-water interaction, may have been associated
with the generation of these mafic volcanics. The vast number of
phreatomagmatic volcanoes (maars and tuff rings) preserved in the
Southern Patagonian Pali Aike Volcanic Field are associated with
extensive lava fields, lava shields, lava spatters as well as sill and
dyke complexes (D'Orazio et al., 2000; Corbella, 2002; Haller et al.,
2005; Haller and Németh, 2006). Therefore, the identification of
diatreme fields in the Northern Patagonia (Eocene to Miocene)
extra-Andean volcanic field suggests similar volcanism occurred at
both sites. We also highlight the role that erosion may have played
in partially or completely removing important volcanic landforms
which may have been associated with the initiation of extensive
flood lava volcanism.

In maar-diatreme volcanoes a large amount of fragmented
country rocks and commonly juvenile lapilli and bombs are ejected
(Lorenz, 1986:White, 1991). The ejected volcaniclastic succession
forms a tephra ring surrounding the crater of a phreatomagmatic vol-
cano (Lorenz, 1986). In cases where the explosions take place in the
shallow subsurface or at surface levels, only a wide crater may form,
commonly referred to as a tuff ring (Lorenz, 1986). Whereas the dis-
ruption takes place below the surface, the evacuated zone may form
cavities that can collapse to form a subsidence feature commonly
referred to as a maar. Maar craters can be a few kilometres across
and be associated with underlying diatremes also up to a few kilo-
metres in diameter (Lorenz, 1986). Subsurface interactions of
magma and water that generate tephra are attributed to thermo-
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Geological setting

The basement in the study area called
Somuncura Massif is an important geolog-
ical unit of Northern Patagonia. It is lim-
ited to the west by the Andean thrust fault.
The basement consists of schists and
gneisses metamorphosed to amphibolite
facies during the early Paleozoic in the
east (Linares et al., 1990) and the late
Paleozoic (Hervé et al., 2005) in the west.
This basement is intruded by the Mamil
Choique granitoids of Devonian (Cerredo
et al., 2000) and early Permian age (Lépez
de Lucchi et al., 2000). These rocks are
covered by Jurassic volcanics whose com-
position varies from acidic in the east to
intermediate-basic in the west. The acidic
volcanics yielded Ar-Ar ages of 186.2 to
176.9 Ma (Alric et al., 1996) and are
related to the opening of the Atlantic
Ocean, while the intermediate are 180—
136 Ma (Page and Page, 1993) and are
related to the subduction that occurred to
the west. In the upper part of the section,
the intermediate volcanics are interbedded
with the late Jurassic Cafiadén Asfalto
lacustrine limestone and black shales
(Cabaleri and Armella, 2005; Cabaleri et
al., 2005), which are in turn overlapped by
the continental sediments of Chubut Group
of early Cretaceous age. These Cretaceous
deposits unconformably cover the older
units and consist of fluvial and continental
sediments with pyroclastic intercalations

Figure 1 Overview of Southern Argentina showing major Cenozoic flood lava and associated
eroded cone fields. Black dots represent active volcanoes in the Andes. Abbreviations:
MS—Meseta Somuncura; CB—Crater Basalt Volcanic Field; CA—Camasii Aike Volcanic
Field; PA—Pali Aike Volcanic Field; CTJ—Chile Tripple Junction; MFS—Magallanes
Fault System (A). On the satellite image (MrSid NASA) of Chubut, clearly visible dark zones
of flood lava fields and point-like eruptive sources (B) recently identified to be diatremes (DI,
2 and 3 studied sites). One of the youngest volcanic fields in the region is the Crater Basalt
Volcanic Field (CBVF). In close-up satellite images (Google Earth), small hill along the Rio
Chubut (C) and dykes terminating to small volcaniclastic rock dominated hills (D2a and D2b)
interpreted to be diatremes. Arrow on C (DI diatreme) points to a contact between coherent
magmatic body and pyroclastic (Pyx) unit. Arrows on D point to a line of dykes terminating

(Codignotto et al., 1979). The Chubut
Group is divided into a lower section (Los
Adobes Formation) of epiclastic nature
(conglomerates, tuffaceous sandstones
with intercalations of mudrock beds and
tuffs) and an upper section (Cerro Barcino
Formation) consisting of tuffs, sandy tuffs,
tuffaceous sandstones and claystones
(Codignotto et al., 1979). Several shallow
marine transgressions covered the topo-
graphic lows during the Tertiary leaving

into the diatremes.

hydraulic explosions in the root zones of the diatremes (Kurszlaukis
and Lorenz, 1997; Zimanowski, 1998; Lorenz et al., 2002). Dia-
tremes exposed after long lasting erosion reveal the subsurface
architecture of a phreatomagmatic volcano (White, 1991). The
shape, size and componentry of diatremes are diverse and depend
on the style of magma-water interaction; the country rock types, the
hydrogeology of the country rocks, the water content and the
magma supply rate (Lorenz, 1984). The study of the diatremes may
give vital information of the syn-eruptive paleoenvironment of a
volcanic field and the hydrogeological conditions of the strata the
uprising magma encountered. Therefore, their identification in
Patagonia is a significant new discovery that may aid in understand-
ing the formation and evolution of the extensive Cenozoic volcanic
fields of Patagonia.

behind erodable, thin silici-clastic sedimen-
tary layers.
Intraplate basaltic rocks of Paleocene,
Eocene, Oligocene-Miocene, and Pliocene-Pleistocene age cover
various localities of Northern Patagonia (Figure 1). Paleocene and
Eocene subvolcanic intrusions of gabbroic composition cut the
Jurassic-Cretaceous sediments and yielded ages of 62.7+0.26 to
48.82+0.41 Ma (Alric, 1996). A major alkaline flood basalt province
developed on the Somuncura Massif during 3624 Ma (Ardolino et
al., 1999) before the eruption of alkaline bimodal volcanics of 15-11
Ma representing the end of the flood volcanism in Somuncura
(Ardolino and Franchi, 1993). Minor basaltic effusions occurred in
the area during the Pliocene-Pleistocene (Massaferro et al., 2006;
Pécskay et al., 2007).
The Quaternary is present as Pleistocene piedmont deposits and
Holocene alluvial, colluvial and eolian deposits (Cabaleri et al.,
2005).
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Morphology and locations

In three distinct locations pyroclastic successions intruded by irreg-
ular mafic dykes have been identified (Figure 1). Along the Rio
Chubut, near Paso de Indio, a small hill side (D1 on Figure 1B)
exposes alkaline basaltic rocks rich in mantle xenoliths of lher-
zolitic composition (Figures 1B, C). The hill is about 100 m across,
circular, and an irregular shaped dyke crops out at its center
(Figures 1B, C). The dyke has an irregular contact with pyroclastic
successions, which form a collar-like distribution patter. About 50
km north of this locality, at least eight circular hills of pyroclastic
rocks (D1 and D2 on Figure 1B) cut by mafic intrusions form
volcanic pipe-like features, which stand about 100 m above the
surrounding desert floor (e.g. Figure 1D). These locations are
surrounded by plateau lava fields, preserving the syn-eruptive
surface about 200 m above these hills. In the northern studied
location, a large neck (called Gorro Frigio) of alkaline basalt, con-
taining crustal xenoliths, intruded into late Jurassic and Cretaceous
sediments (Figure 2A). The neck is subcircular in shape, ca. 600 m
across and stands 180 m above the surrounding surface (Figure 2A).
It has a generally sharp contact with the sedimentary host rock and
is also composed of pyroclastic rocks intruded by dykes with
peperitic margins (Figure 2B). The pyroclastic succession is rich in
angular shaped fragments of sandstone from the Cretaceous terres-
trial sedimentary units (Figure 2C).

These pyroclastic pipes cut through Cretaceous continental silici-
clastic sedimentary rocks, and they are commonly interconnected

Figure 2 Overview of the D3 diatreme (A) standing 200 m above
the surrounding landscape. Irregular-shaped peperitic dykes
(arrows) intrude into diatreme-filling pyroclastic units (B). The
pyroclastic unit is rich in accidental lithic fragments from the host
sedimentary successions (C). Arrows point to vertical clast
alignment in the pyroclastic diatreme-filling succession.
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Figure 3 Overview of a diatreme (D) group (D2 on Figure
IB) connecting to dykes cross-cutting the desert floor
(arrows).

with dykes (Figure 1D), that are exposed and traceable on the desert
floor. The dykes commonly have sharp boundaries and en-echelon-
like steps are prominent in aerial and satellite photographs (Figures
LD, 3). These dykes commonly terminate in pipe-like pyroclastic
rocks (Figures 2 and 3). The northernmost site of the studied area is
complex and associated with SE-NW trending dykes that make a
slight turn in ESE-WNW direction showing a clear relationship
between the dyke and the exposed pyroclastic successions forming
an approximately 400 m long volcanic complex (Figures 1D, 3). The
studied site at D2 is a dual hill slightly elongated in a ESE-WNW
direction (Figure 1D). In the eastern site, the volcanic complex pre-
serves a narrow veneer of pyroclastic rocks connected to the ESE-
WNW-trending dyke and forms a small hill (Figure 1D). However,
the western site exposes a more complex dyke-pyroclastic pipe
architecture (Figures 1D, 4). Here the hill is volumetrically domi-
nated by pyroclastic rocks that were intruded by the ESE-WNW-
trending dyke, which forms a bulbous upper zone of ponded sill-like
intrusive (Figure 4). Between the two pyroclastic-dominated hills, a
connecting dyke makes an approximately 100 m long ridge where
the dyke intruded Cretaceous sedimentary rocks. A characteristic
peperitic zone (Figure 3) occurs adjacent to the chilled margin of this
dyke.

Figure 4 Overview of a large pyroclastic rock-dominated hill
(D2b) cross-cut by a dyke (dark zones) that forms bulbous ponded
lava topping the hill.
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Pyroclastic rocks

Description

Coarse-grained lapilli tuft and tuff successions are exposed in
each of the studied locations. In the southernmost exposure (Figures
1C, 5A), the volume of the exposed lapilli tuff and tuff succession is
small, and they are predominantly composed of angular, glassy,
basaltoid lapilli with low vesicularity (Figure 5B). The lapilli-sized
juvenile fragments are commonly angular, and they are glassy, in
spite of the microlite content (Figure 5B). The ash-sized particles are
glassy but advanced palagonitisation is prominent. Siliciclastic rock
fragments as well as quartz pebbles and sand apparently represent
accidental lithic fragments derived from the surrounding country
rocks. This locality is rich in angular to ovoid-shaped lherzolite
nodules, up to 10 cm in diameter. Angular crystal fragments of
olivine and clinopyroxene from these lherzolites are common,
although alteration is advanced in many cases.

Lapilli tuff and tuff breccia successions in the northern study
sites (Figure 1D) are common; however, their textural characteristics
are different from the rocks of the southern sites. The exposed pyro-
clastic rocks are unsorted and largely composed of moderately to
non-vesicular basaltoid ash and lapilli (Figure 5C). The lapilli-sized
fragments are commonly vesicular with vesicles being rounded to
elongate in shape, frequently filled by calcite. The juvenile frag-
ments are glassy or have characteristic glassy rims a few mm in
thickness. The pyroclastic rocks contain fine sand and silt in their
matrix, and occasional lapilli to block-sized sandstone fragments
(Figure 5D). The intact sandstone fragments still preserve their bed-
ding structure; however, their margins are often rounded and original
bedding in this marginal zone is destroyed. The pyroclastic rocks of
this site lack lherzolite nodules and/or megacrysts. No bedding,
stratification or vertical clast alignments were observed in any of the
described pyroclastic rocks (Figure 5C).

Interpretation

The pyroclastic rocks described above are interpreted to be con-
duit filling, massive pyroclastic breccias. The low vesicularity of the
juvenile pyroclasts, as well as their chilled textural character indi-
cates they formed by phreatomagmatic fragmentation driven by
magma/water interactions. Sandstone and quartzofeldspatic mineral
phases dre interpreted to be accidental lithic fragments disrupted by

P =2 - -t ¢ # - *

the phreatomagmatic explosions from the surrounding conduit wall.
The textural characteristics of these fragments are similar to the
rocks of the Cretaceous terrestrial sediments, suggesting that the
explosions took place in these units. The moderate vesicularity and
slightly bulbous to angular shapes of the pyroclasts indicate that
magma vesiculation was in its initial stage upon phreatomagmatic
fragmentation of the magma. The relatively low proportion of acci-
dental lithic fragments in the tuff breccias suggests that the trans-
portation of these pyroclasts took place in a relatively open conduit,
possibly during the final stage of the eruptions, when the volcanic
conduit was established and stable, and therefore not prone to signif-
icant conduit wall collapses.

Dyke-host sediment interfaces

Description

Contact features between dyke and host sediment (either silici-
clastic or pyroclastic) are exposed in the volcanic pipe-like struc-
tures in the north (Figure 6A). The two characteristic circular hills
are connected by a narrow ridge, about 100 m long, formed by an
irregular, dm-to-m wide dyke. This ridge is about 30 m below the
level where pyroclastic breccia is well exposed in the westernmost
volcanic hills. The dyke has a chilled margin between cm and dm in
width (Figure 6A), which is very irregular, commonly bulbous, and
detached mm-dm size fragments of the chilled dyke are hosted in the
surrounding fine sandstone (Figure 6A). Along the dyke rim, in the
exposed sandstone sections, bedding or stratification of the host sed-
imentary rock is disturbed, and the sandstone shows an homogenised
texture. No strong thermal interaction indicators such as baking, dis-
coloration or mineralization have been recognized. Along the dyke
margin, dyke-parallel elongated vesicle trains are common, forming
repeated cm-wide zones that alternate with glassy layers (Figure
6B).

Dyke margins exposed in both siliciclastic and pyroclastic hosts
are chilled and form up to a few centimetre wide bulbous, irregular
black glassy zones around the otherwise reddish-brown aphanitic
intrusions. The marginal zones of the feeding dykes commonly con-
tain elongated, mm-size vesicles just below the glassy rims. Toward
the feeder dyke centres more pronounced horizontally oriented joint-
ing pattern and a general massive texture is characteristic.

The dyke and host pyroclastic breccia interaction textures are
observed within the three distinct pyroclastic material dominated hills
(Figure 7). In lower exposures the dyke intrudes into the host silici-
clastic sediment and along its margin large blocks of dyke fragments
form a distinct blocky peperite (Figure 7A). A few metres above this,
the dyke clearly intrudes the pyroclastic breccia into which large,
metre-size, elongated, detached dyke fragments form peperitic zones
(Figure 7B). Finger-like, irregularly shaped lobes of low vesicularity

Figure 5 A) Low vesicularity volcanic lithic lapilli and lherzolite
nodules are characteristic for the pyroclastic rocks preserved in the
southernmost diatreme. B) Weakly vesicular lapilli tuff forming the
main mass of the fragmented volcanic rocks preserved in the southern
diatreme, rich in angular glass shards (light grey fragments). C)
Pyroclastic succession of massive lapilli tuff preserved under bulbous
dyke in the D2 diatremes. D) Moderately vesicular glassy pyroclasts
of the diatreme-filling lapilli tuffs.

Figure 6 A) Irregular peperitic (P) contact of dyke (D) hosts
Cretaceous siliciclastic sediments between the two diatremes of
D2. B) Chilled peperitic (P) dyke margin with aligned vesicles
(arrow) at the D2 diatreme site.
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Figure 7 A) Dyke margin (dark zones) close to the interface
between the pyroclastic and siliciclastic (white zones) host in the
D2 diatremes. B) Elongated fluidal detached dyke finger (next to
hammer) in the pyroclastic breccia. C) Siliciclastic matrix rich
zone in the pyroclastic breccia (grey zone) as a host in the dyke
(dark zone on the left side of the view) that intruded and formed
globular peperite. This zone is near the inferred interface between
the host siliciclastic conduit and the conduit-filling pyroclastic
breccia. D) Sharp but irregular peperitic margin of the dyke (dark
zone on the left side of the view) in the pyroclastic breccia.

basalt, meters in length, form closely packed pyroclastic breccias that
clearly differ from the host pyroclastic succession, of vesicular
basaltoid clasts and fine matrix (Figure 7B). Close to the interface
between the irregular margin of the host siliciclastic and pyroclas-
tic rocks. elongated protrusions form globular peperitic zones (Fig-
ure 7C). At the interface of the dyke and pyroclastic host, white
sand and silt form irregular halos cm-to-dm in width. The dyke
margins in the upper pyroclastic host breccia are sharp but irregu-
lar (Figure 7D).

Interpretation

Mingling of host siliciclastics with the diatreme-filling pyro-
clastic sediments indicates the host units were water saturated and at
least partly unconsolidated (Brooks, 1995; Doyle, 2000; Dadd and
Van Wagoner, 2002). The contact features of dykes and host sedi-
ment regardless of its composition (pyroclastic or siliciclastic) are
interpreted to be peperitic, using peperite as a genetic term (White et
al., 2000; Skilling et al., 2002; Németh and Martin, 2007). The bul-
bous contact between dykes and terrestrial sediments indicate glob-
ular peperite formation which is probably controlled by the grain
size of the host sediment (Busby-Spera and White, 1987). The larger
entrapped milled sandstone fragments in the dykes, as well as in the
nearby marginal zone of the dykes intruded into pyroclastic host,
indicate detachments of larger siliciclastic sedimentary blocks from
a soft and wet host (Busby-Spera and White. 1987; Hooten and Ort,
2002). Sections of fragmented country rocks may collapse or slide
into the partially evacuated root zone forming subterranean peperites
associated with a diatreme (Hooten and Ort. 2002: Lorenz et al.,
2002). The relatively intact shape of such blocks suggests that the
country rock succession might have been inhomogeneously water
saturated and/or partially consolidated. Alternatively, the heat of the
intruding dykes may lead to the formation of dry zones along the
conduit, which may have acted in a brittle fashion against the
mechanical stress generated by the subsequent dyke intrusion. Such
processes have been inferred from dykes and sills initiated from a
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lava lake emplaced in a tephra ring crater (c.f., Martin and Németh,
2004, 2007). Lack and/or changing position of further explosions
across the diatreme pipe, but continued rise and intrusion of magma,
caused emplacement of peperite masses as plugs as inferred from
other diatreme settings (c.f., Lorenz et al., 2002).

Close to the feeder dykes there are zones of mixed basalt/sedi-
ment breccias showing features of basalt/sediment mingling in the
liquid state. The intimate mingling took place between basalt lava and
fluidized sedimentary material regardless of its composition or grain
size. The mm-m scaled mingling between dykes and the host silici-
clastic sediments resulted in the transportation of larger sedimentary
clasts deep into the pyroclastic material-dominated zones that are
connected to zones of siliciclastic sediment-rich channels, indicating
ongoing fluidization during the emplacement of the dykes.

The master feeder dykes are commonly traceable for tens of kilo-
metres across the desert floor. Individual curved sections of these dykes
form an en-echelon array where diatremes are seemingly located in the
major steps between dyke segments. This geometry indicates a possible
relationship between diatreme formation, and structurally and rheo-
logically controlled syn-eruptive hydrogeology of the host rock similar
to other well-known phreatomagmatic volcanic fields such as the Eifel
in Germany (c.f. Lorenz, 1984; Biichel, 1993).

Diatreme field in Northern Patagonia

The volcanic pipe-like features identified in Northern Patago-
nia, mainly composed of pyroclastic and intrusive rocks, are inter-

- preted as exhumed, strongly eroded volcanic diatremes (Lorenz,

1986; White, 1991). The common relationship between long dykes
and the locations of diatremes suggests phreatomagmatic volcanoes
developed at hydrogeologically active zones along the strike of the
dykes during their emplacement. The lithofacies characteristics of
the exposed volcanic rocks are consistent with features of a lower
diatreme seen in similar rock associations at Hopi Butte, Arizona
(White, 1991). This implies a large amount of erosion has taken
place to expose the facies relationship between in situ pyroclastic
breccias which formed by phreatomagmatic fragmentation of the
magma and subsequently intruded dykes and sills. The volcanic suc-
cessions inferred to be conduit-filling pyroclastics are associated
with intra-vent peperites. The closely spaced two diatremes in the
northern study site are connected by a narrow, but irregularly shaped
dyke that intruded into the host siliciclastic succession. Along the
contact zone of this dyke, a wide peperitic contact formed. The
peperitic dykes and the location of the pyroclastic rocks intruded by
the same dyke indicate a close relationship between dyke intrusion
and the development of peperite as well as phreatomagmatic pyro-
clastic rocks. This suggests that the present level of exposure repre-
sents more or less the level of phreatomagmatic fragmentation initi-
ated in the pre-volcanic sedimentary succession.

The 3D relationship between the locations of the dykes and the
surrounding plateau-like lavas suggests that the present day expo-
sures are at least 200 m below the surface zones of former volcanoes.
Because erosion removed the former volcanic edifices, we cannot
give further details of the style, size and distribution pattern of vol-
canic landforms that may have been associated with the described
lower diatremes. Recent work has also demonstrated that intra-sedi-
mentary debris jets could form in continental phreatomagmatic vol-
canoes (Ross and White, 2006). The resulting subterranean deposits
are documented and expected to be very similar to those of deposits
formed at the surface. Therefore the recent discovery in Northern
Patagonia suggests magma/water interaction, where both non-
explosive peperite and explosive debris jet-forming events occurred
during dyke intrusions through wet and unconsolidated siliciclastic
and pyroclastic country rocks.

The identification of diatremes associated with Northern
Patagonian flood lava fields indicates that phreatomagmatism is
likely a common process associated with flood lava volcanism as has
been postulated on the basis of the Karro-Ferrar Provinces (Ross et
al., 2005; Ross and White, 2005a; McClintock and White, 2006).
However, the present erosion state of the volcanic fields in Patagonia
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does not allow for further interpretations of the style and timing of
phreatomagmatism in relationship to the formation of the extensive
lava fields. The lack of comprehensive studies of the volume and
duration of the Patagonian Cenozoic flood lava volcanism also hin-
ders further interpretations with regard to the scale of the volcanism.
At present, it seems that the extra-Andean lava fields are associated
with the formation of distinct volcanic fields that were active for long
periods of time, with a relatively low magmatic output rate. These
fields may be dominated by either phreatomagmatic activity, similar
to Pali Aike in South Patagonia (D'Orazio et al., 2000; Corbella,
2002: Haller et al., 2005) or lava effusion similar to Crater Basalt in
Northern Patagonia (Massaferro et al., 2006; Pécskay et al., 2007).

Conclusion

In this short note we identify a volcanic episode that occurred during
the formation of the older (Oligocene/Miocene) Patagonian exten-
sive lava fields, when driven volcanic processes, driven by
magma/water interaction, surely accompanied ongoing effusive vol-
canism. The identification of peperite along irregular dyke margins
intruded into Cretaceous terrestrial sediments suggests that those
sediments were still loose and water saturated. The exposed pyro-
clastic successions document phreatomagmatic explosive events dri-
ven by magma/water interactions. These successions also indicate a
water saturated state for both the host terrestrial and conduit-filling
pyroclastic sediments upon intrusion by subsequent feeder dykes
which led to the formation of peperite. The identification of these
pyroclastic successions, however, does not necessarily mean that
surface manifestations such as maars and tuff rings existed over
these volcanic pipes. They also could represent only subterranean
deposits formed by debris jets generated by subterranean explosions
in the unconsolidated and water saturated country rock units (Lorenz
et al., 2002; Ross and White, 2005b; Ross and White, 2006; Lorenz
and Kurszlaukis, 2007). However, the large volumes of moderately
vesicular, angular and glassy juvenile lapilli in the volcanic conduit-
filling deposits suggest that the phreatomagmatic fragmentation gen-
erated enough energy to form an open conduit relatively quickly that
was then filled by the pyroclasts and therefore potentially connected
to a maar or tephra ring volcano at the surface. Here we demon-
strated that the studied volcanic fields in Chubut were formed by
more complex volcanic processes than just dyke-fed effusive events.
Large numbers of apparently similar volcanic pipes can also be iden-
tified from satellite images, which may suggest the existence of an
extensive diatreme field in the Chubut area. This discovery high-
lights the need for further investigations in the area to refine the erup-
tive mechanism of the Patagonian Cenozoic volcanism.
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