Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

QUALITY INSPECTION OF LEATHER USING NOVEL PLANAR SENSOR

A Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Engineering (Research)

VISHNU MOHAN KASTURI

School of Engineering and Advanced Technology, Massey University, Turitea Campus, Palmerston North, September 2008 "This dissertation is dedicated to my Family"

ABSTRACT

Value of leather produced from sheep is determined by its quality and looseness is one of the quality attributes that determines the value of the leather. As of now, looseness in sheep skin can be determined only after the tanning process is done and it is a long and expensive process to treat the looseness in skins after the tanning process. An interdigital sensor based sensing system has been developed which works on the principle of sensing technique based on interaction of electric field with the materials under test. Finite element software has been used for analysis and design of sensors. It has been reported that a good correlation was found between the actual looseness values and calculated looseness values.

Acknowledgements

Firstly I would like to thank, Dr. Subhas Mukhopadhyay for giving me an opportunity to do my masters under his supervision. His Wisdom, knowledge and continuous support always inspired and motivated me and I am indebted for his technical, financial and emotional support. I will always be grateful for providing opportunities to publish and present my work at various conferences.

I would like to thank Mr. G. Sen gupta for his help regarding programming microcontroller. I would also like to thank Dr. Tim Alsop (LASRA) for his valuable inputs about the sheep skins and Leather and Shoe Research Association (LASRA) for providing the samples for experimentation.

On a personal level I would like to thank all my friends especially Ch. Naga Srikanth and Barnendar who helped me emotionally and financially to reach my goals. I would also like to thank my brother Madhan Mohan and his wife Swarna for just being a phone call away and most importantly my parents Mr. Krishna Gopal and Mrs. Shailaja for their unconditional love, support and all the sacrifices they made to get me to this position.

Finally I would like to thank all technical and non-technical staff at SEAT for helping me through various stages.

PUBLICATIONS

Below are the publications in conjunction with the authors Masters Candidacy:

Conference Publications

- V. Kasturi, S.C. Mukhopadhyay, G. Sengupta, "Embedded Microcontroller Aided Planar Interdigital Sensor Based property Estimation of Sheep Skin", 14th Electronics New Zealand Conference (ENZCon 2007), Victoria University of Wellington, Wellington, New Zealand, 12 – 13 November, 2007.
- V. Kasturi, S.C. Mukhopadhyay, G. Sengupta, "Interdigital Sensors: A Review of their Applications", 2nd International Conference on Sensing Technology (ICST) Massey University, Palmerston North, New Zealand, November 26-28, 2007.
- V. Kasturi, S.C. Mukhopadhyay, Y. M. Huang, "A Novel Bio-sensor for Noninvasive Sensing of Sheep Skin", 4th Asia Pacific Conference on Transducers and Micro/Nano Technologies (APCOT 2008), National Cheng-Kung University, Tainan, Taiwan, pp. 251 – 254, 22 – 25 June, 2008.
- A. R. Mohd Syaifudin, S.C.Mukhopadhyay and V. Kasturi, "Smart Sensing System for Health and Environmental", Digital Signal Processing Creative Design Contest (DSP 2008), Southern Taiwan University, 29 November, 2008.

5. V. Kasturi, S.C. Mukhopadhyay, "Planar Interdigital Sensors Based Looseness Estimation of Leather ", 3rd International conference on sensing technology, National Cheng-Kung University, Tainan, Taiwan, pp. 462 – 466, Dec 1 – Dec 3, 2008.

Journal Publications

 V. Kasturi, S.C. Mukhopadhyay, T. Allsop, S. Deb Choudhury, G. E. Norris, "Assessment of pelt quality in leather making using a novel non-invasive sensing approach", Journal of Biochemical and Biophysical methods, Volume 70, issue 6, pages 809 – 815, 24 April, 2008.

Textbook Publications

Work is published in the Sensors book by Springer.

 S. C. Mukhopadhyay, Y. M. Huang, "Estimation of Property of Sheep skin to Modify the Tanning Process", Sensors: Advancements in Modeling, Design Issues, Fabrication and Practical Applications - Springer, pp. 91 – 112, July 2008.

Presentations

1. Participated in IEEE pacific zone seminar, December 2007.

2. Presented my research work at IEEE Postgraduate student presentation day, August 2008.

Contents

ABSTRACT	i
ACKNOWLEDGEMENT	ii
PUBLICATIONS	iii
CONTENTS	iv
LIST OF FIGURES	viii
LIST OF TABLES	xv

CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Non-Destructive Evaluation	1
1.3 Sensors	4
1.4 Objective of research	8
1.5 research on skin property estimation	10
1.6 Organization of Thesis	
CHAPTER 2 LEATHER: EVALUATION OF QUALITY	12
2.1 Introduction	12
2.2 Structure of sheep skin	12
2.3 Looseness	16
2.4 Factors affecting looseness	17
2.5 Processing of Sheep skin	21
2.6 Tanning in ancient history	22

2.7 Modern methods of Tanning	22
2.8 Types of Leather	26
CHAPTER 3 INTERDIGITAL SENSORS	28
3.1 Introduction	28
3.2 Operating principle of Interdigital sensors	28
3.3 Applications of Interdigital sensors	34
CHAPTER 4 EXPERIMENTAL SET-UP AND ANALYSIS OF	38
SENSORS	
4.1 Introduction	38
4.2 Design of Interdigital sensors	38
4.3 Finite element modeling of Interdigital sensors	46
4.4 Preliminary experiments	56
4.5 Experimental set-up	62
4.6 Conclusion	64
CHAPTER 5 EXPERIMENTAL PROCEDURE AND RESULTS	65
5.1 Experimental procedure	65
5.2 Observations for sheep skins before Tanning	68
5.3 Looseness values for sheep skins	75
5.4 Effect of thickness of sheep skin on sensor voltage	89
5.5 Observations for sheep skins after Tanning	95
5.6 Calculation of looseness in sheep skin	109
5.7 Conclusion	114

CHAPTER 6 DATA ACQUISITION SYSTEM	115
6.1 Introduction	115
6.2 Data acquisition system	115
6.3 Experimental results	116
6.4 Conclusion	117
CHAPTER 7 CONCLUSION AND FUTURE WORKS	118
7.1 Conclusions	118
7.2 Recommendations and future work	120
CHAPTER 8 REFERENCES	121

LIST OF FIGURES

Figure 1.4.1 Cross section of loose leather with extra spaces between the fibres	8
Figure 1.4.2 Cross Section of tight leather with less space between the fibres	9
Figure 2.2.1 Cross section of sheep skin	13
Figure 2.2.2 Leather samples with fat cells and looseness shown	15
Figure 2.2.3 Looseness scale determined by LASRA	16
Figure 3.2.1 Operating principle of an Interdigital sensor	29
Figure 3.2.2 Interdigital sensor structure	30
Figure 3.2.3 Electric field formed between two electrodes for different pitch	31
Figure 3.2.4 Penetration depths for varying spatial lengths between the electrodes	31
Figure 3.2.5(a) Sensing the material density	32
Figure 3.2.5(b) Measure the distance between sensor and the material	32
Figure 3.2.5(c) Track the structure of the material under test	33
Figure 3.2.5(d) Sensing the moisture	33
Figure 4.2.1 Image of sensor 1	38
Figure 4.2.2 Design configuration of sensor 1	39
Figure 4.2.3 Image of sensor 2	40
Figure 4.2.4 Design configuration of sensor 2	40
Figure 4.2.5 Image of sensor 3	41
Figure 4.2.6 Design configuration of sensor 3	42
Figure 4.2.5 Image of sensor 4	43
Figure 4.2.8 Design configuration of Sensor 4	43
Figure 4.2.9 The sensor, excitation and output signal	44
Figure 4.3.1 FEMLAB model navigator	46

Figure 4.3.2 Model of Interdigital Sensor	47
Figure 4.3.3 Window for boundary setting of rectangular block	48
Figure 4.3.4 Window for boundary setting of sensor	49
Figure 4.3.5 Window showing excitation and ground electrodes distinctively	50
Figure 4.3.6 Window for create composite object	50
Figure 4.3.7 shows the window for setting the Sub domain	51
Figure 4.3.8 Mesh of the model	51
Figure 4.3.9 Solve menu	52
Figure 4.3.10 Menu to set solve parameters	52
Figure 4.3.11 Electric field intensity for sensor 1	53
Figure 4.3.12 Electric field intensity for sensor 2	53
Figure 4.3.13 Electric field intensity for sensor 3	54
Figure 4.3.14 Electric field intensity for sensor 4	54
Figure 4.4.1 Graphical representation of sensor output voltage values for sensor 1	56
Figure 4.4.2 Graphical representation of sensor output voltage values for sensor 1	57
Figure 4.4.3 Graphical representation of sensor output voltage values for sensor 1	58
Figure 4.4.4 Graphical representation of sensor output voltage values for sensor 1	59
Figure 4.4.5 Sensor values for each material individually	60
Figure 4.5.1 Block diagram of experimental setup	62
Figure 4.5.2 Experimental setup	63

Figure 4.5.3 Full-wave rectifier circuit	63
Figure 4.5.4 Voltage waveforms at different stages in the precision rectification circuit	64
Figure 5.1.1 Image of sheep skin	65
Figure 5.1.2 Pins of the sensor	66
Figure 5.1.3 Sheep skin labelled into five zones	66
Figure 5.1.4 Sensor with skin placed over it	67
Figure 5.2.2 Sensor output voltages at each position of various samples for	70
Figure 5.2.3 Sensor output voltages at each position of various samples for Group 2	72
Figure 5.2.4 Sensor output voltages at each position of various samples for Group 3	74
Figure 5.2.5 (i) Looseness values for group 1 determined by two experts from LASRA	75
Figure 5.2.5 (ii) Looseness values for group 2 determined by two experts from LASRA	76
Figure 5.2.5 (iii) Looseness values for group 3 determined by two experts from LASRA	76
Figure 5.2.6 Comparison of sensor output voltage with looseness values for position 4 of group 1	77
Figure 5.2.7 Comparison of sensor output voltage with looseness values for position 4 of group 1	77
Figure 5.2.8 Comparison of sensor output voltage with looseness values for position 5 of group 1	78
Figure 5.2.9 Comparison of sensor output voltage with looseness values for position 5 of group 1	78
Figure 5.2.10 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 1	79
Figure 5.2.11 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 1	79
Figure 5.2.12 Comparison of sensor output voltage with looseness values for average of all positions of group 1	80

Figure 5.2.13 Co av	omparison of sensor output voltage with looseness values for verage of all positions of group 1	80
Figure 5.2.14 Co	omparison of sensor output voltage with looseness values for osition 4 of group 2	81
Figure 5.2.15 Co av	omparison of sensor output voltage with looseness values for verage of position 4 of group 2	81
Figure 5.2.16 Co	omparison of sensor output voltage with looseness values for osition 5 of group 2	82
Figure 5.2.17 Co	omparison of sensor output voltage with looseness values for osition 5 of group 2	82
Figure 5.2.18 Co av	omparison of sensor output voltage with looseness values for verage of positions 4 and 5 of group 2	83
Figure 5.2.19 Co av	omparison of sensor output voltage with looseness values for verage of positions 4 and 5 of group 2	83
Figure 5.2.20 Co av	omparison of sensor output voltage with looseness values for verage of all positions of group 2	84
Figure 5.2.21 Co	omparison of sensor output voltage with looseness values for verage of all positions of group 2	84
Figure 5.2.22 Co	omparison of sensor output voltage with looseness values for osition 4 of group 3.	85
Figure 5.2.23 Co	omparison of sensor output voltage with looseness values for osition 4 of group 3.	85
Figure 5.2.24 Co	omparison of sensor output voltage with looseness values for osition 5 of group 3.	86
Figure 5.2.25 Co	omparison of sensor output voltage with looseness values for osition 4 of group 3.	86
Figure 5.2.26 Co av	omparison of sensor output voltage with looseness values for verage of positions 4 and 5 of group 3.	87
Figure 5.2.27 Co	emparison of sensor output voltage with looseness values for verage of positions 4 and 5 of group 3.	87
Figure 5.2.28 Co	omparison of sensor output voltage with looseness values for verage of all positions of group 3.	88

Figure 5.2.29 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 3.	88
Figure 5.3.1 Leather with marked positions	89
Figure 5.3.2 Skin area of one of the positions with 5 holes in it	90
Figure 5.3.3 Comparison of size of the hole with 10 cents coin	90
Figure 5.3.4 Comparison of thickness with sensor voltage before tanning	91
Figure 5.3.4 Comparison of thickness with sensor voltage before tanning	91
Figure 5.3.4 Comparison of thickness with sensor voltage before tanning	92
Figure 5.3.5 Comparison of looseness with sensor voltage before tanning with skins arranged in the increasing order of thickness.	93
Figure 5.3.5 Comparison of looseness with sensor voltage before tanning with skins arranged in the increasing order of thickness without considering few samples.	93
Figure 5.3.6 Comparison of looseness with sensor voltage for the samples having same looseness arranged in increasing order of thickness.	94
Figure 5.4.1 Comparison of sensor output voltage with looseness values for position 4 of group 1	95
Figure 5.4.2 Comparison of sensor output voltage with looseness values for position 4 of group 1	95
Figure 5.4.3 Comparison of sensor output voltage with looseness values for position 5 of group 1	96
Figure 5.4.4 Comparison of sensor output voltage with looseness values for position 5 of group 1	96
Figure 5.4.5 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 1	97
Figure 5.4.6 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 1	97
Figure 5.4.7 Comparison of sensor output voltage with looseness values for average of all positions of group 1	98
Figure 5.4.8 Comparison of sensor output voltage with looseness values for average of all positions of group 1	98

Figure 5.4.9 Comparison of sensor output voltage with looseness values for position 4 of group 2	99
Figure 5.4.10 Comparison of sensor output voltage with looseness values for average of position 4 of group 2	99
Figure 5.4.11 Comparison of sensor output voltage with looseness values for position 5 of group 2	100
Figure 5.4.12 Comparison of sensor output voltage with looseness values for position 5 of group 2	100
Figure 5.4.13 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 2	101
Figure 5.4.14 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 2	101
Figure 5.4.15 Comparison of sensor output voltage with looseness values for average of all positions of group 2	102
Figure 5.4.16 Comparison of sensor output voltage with looseness values for average of all positions of group 2	102
Figure 5.4.17 Comparison of sensor output voltage with looseness values for position 4 of group 3.	103
Figure 5.4.18 Comparison of sensor output voltage with looseness values for position 4 of group 3.	103
Figure 5.4.19 Comparison of sensor output voltage with looseness values for position 5 of group 3.	104
Figure 5.4.20 Comparison of sensor output voltage with looseness values for position 4 of group 3.	104
Figure 5.4.21 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 3.	105
Figure 5.4.22 Comparison of sensor output voltage with looseness values for average of positions 4 and 5 of group 3.	105
Figure 5.4.23 Comparison of sensor output voltage with looseness values for average of all positions of group 3.	106
Figure 5.4.24 Comparison of sensor output voltage with looseness values for average of all positions of group 3.	106
Figure 5.4.25 Comparison of looseness with sensor voltage after tanning with	107

skins arranged in the increasing order of thickness.

Figure 5.4.26 Comparison of looseness with sensor voltage after tanning with skins arranged in the increasing order of thickness.	107
Figure 5.4.26 Comparison of looseness with sensor voltage after tanning with skins arranged in the increasing order of thickness. 108	108
Figure 5.5.1 Comparison of actual looseness with calculated looseness with skin samples arranged in increasing order of thickness.	111
Figure 5.5.2 Comparison of actual looseness with calculated looseness with skin samples arranged in increasing order of thickness.	111
Figure 5.5.3 Comparison of actual looseness with calculated looseness with skin samples arranged in increasing order of thickness.	113
Figure 5.5.4 Comparison of actual looseness with calculated looseness with skin samples arranged in increasing order of thickness.	113
Figure 7.1 Microcontroller	115

LIST OF TABLES

Table 4.3.1 Capacitance values of four sensors	55
Table 4.4.1 Sensor output voltage values for sensor 1	56
Table 4.4.2 Sensor output voltage values for sensor 1	57
Table 4.4.3 Sensor output voltage values for sensor 1	58
Table 4.4.4 Sensor output voltage values for sensor 1	59
Table 5.1.1 Sensor results for various samples	69
Table 5.2.2 Results for group 2	71
Table 5.2.3 Results for group 3	73
Table 5.5.1 Scaling factor and calculated looseness values for skins before 110	110 tanning
Table 5.5.2 Scaling factor and calculated looseness values for skins after tanning	g 112
Table 6.1 Relationship between ADC values and Looseness values	116