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Abstract

In the well known SIR endemic model, the infection-free steady state is globally stable
for Ry < 1 and unstable for Ry > 1. Hence, we have a forward bifurcation when R = 1.
When Ry > 1, an asymptotically stable endemic steady state exists. The basic repro-
duction number Ry is the main threshold bifurcation parameter used to determine the

stability of steady states of SIR endemic models.

In this thesis we study extensions of the SIR endemic model for which a backward
bifurcation may occur at Rg = 1. We investigate the biologically reasonable conditions
for the change of stability. We also analyse the impact of different factors that lead to a
backward bifurcation both numerically and analytically. A backward bifurcation leads to

sub-critical endemic steady states and hysteresis.

We also provide a general classification of such models, using a small amplitude ex-
pansion near the bifurcation. Additionally, we present a procedure for projecting three
dimensional models onto two dimensional models by applying some linear algebraic tech-
niques. The four extensions examined are: the SIR model with a susceptible recovered

class; nonlinear transmission; exogenous infection; and with a carrier class.

Numerous writers have mentioned that a nonlinear transmission function in relation
to the infective class, can only lead to a system with an unstable endemic steady state. In
spite of this we show that in a nonlinear transmission model, we have a function depending
on the infectives and satisfying certain biological conditions, and leading to a sub-critical

endemic equilibriums.
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