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Abstract

In the well known SIR endemic model, the infection-free steady state is globally stable
for Rg < 1 and unstable for Rg > 1. Hence, we have a forward bifurcation when Rq = 1.
When Ry > 1, an asymptotically stable endemic steady state exists. The basic repro-
duction number R is the main threshold bifurcation parameter used to determine the
stability of steady states of SIR endemic models.

In this thesis we study extensions of the SIR endemic model for which a backward
bifurcation may occur at Ro = 1. We investigate the biologically reasonable conditions
for the change of stability. We also analyse the impact of different factors that lead to a
backward bifurcation both numerically and analytically. A backward bifurcation leads to
sub-critical endemic steady states and hysteresis.

We also provide a general classification of such models, using a small amplitude ex-
pansion near the bifurcation. Additionally, we present a procedure for projecting three
dimensional models onto two dimensional models by applying some linear algebraic tech-
niques. The four extensions examined are: the SIR model with a susceptible recovered

class; nonlinear transmission; exogenous infection; and with a carrier class.

Numerous writers have mentioned that a nonlinear transmission function in relation
to the infective class, can only lead to a system with an unstable endemic steady state. In
spite of this we show that in a nonlinear transmission model, we have a function depending
on the infectives and satisfying certain biological conditions, and leading to a sub-critical

endemic equilibriums.
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1 INTRODUCTION

1 Introduction

1.1 The Basic SIR Model

There are many infections for which the recovered individuals attain an immunity against
the infection. This type of infection can be modeled by the SIR model, which is based
on the classic epidemic theory of Kermack and McKendrick [7]. This model has played
an important role in mathematical epidemiology. In this model, a closed population of
constant size is subdivided into three classes: susceptible (S) individuals that may suffer
infection; infected (/) individuals that transmit infection to the susceptibles; and removed

(R) individuals who are recovered and immune or dead.

The proportions in each class at time ¢ are denoted as s(t), i(t) and 7(t) respectively.

The differential equations representing this system are

ds

o = ko Psi—us, (1)
di ) :

E = IBSZ - (7 + M)Za

ar

i Yi — pr.

Asr(t) =1 - s(t) - i(t), the system is two dimensional. The parameters are birth and
death rate (¢ > 0), recovery rate (v > 0) and contact rate (6 > 0) (See Table 1). The

basic reproduction number Rg = is defined to be the expected number of secondary

B
pty?
cases generated from an infective case in a susceptible population [12].

Now, if i << 7, then this system becomes the SIR epidemic model, which describes
the sudden rise and fall of an infection in a closed population, for example influenza,
plague etc [3]. If, on the other hand, 1 ~ <, then we have the SIR endemic model, where
an infection tends to persist in a population for a longer period, for example leprosy or
tuberculosis. Endemic models focus on when there is no net change in the number of
individuals in the infective class, so prevalence of infection remains constant [11].

Thesis Outline

In this thesis, we review properties of the SIR epidemic model in Sect. 1.2 briefly, and the
endemic model in Sect. 1.3 in detail as this model is the primary subject of this thesis.
In Chapters 2 and 4 we present the two and three dimensional extensions of the SIR
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Variables Description Proportions

S Number of susceptibles s(t)
I Number of infectives i(t)
R Number of recovered people with immunity 7(t)

Parameters Description Dimensions
L Birth and death rate time™1
ol Recovery rate time™!
1) Transmission or contact rate time™!
Ro Basic reproduction number -

Table 1: Summary of the notations used in the SIR Model

endemic model respectively discovering different dynamics, using Ry as the main bifur-
cation parameter and showing that an endemic infection may persist for some values of
Ro < 1. To prove these dynamics, we calculate the steady states of these models and
their stability by analysing the Jacobian matrices using the Maple [5]. We also analyse
bifurcation and phase-plane diagrams using the MATLAB [10]. In short, we set up a
model, using nonlinear ordinary differential equations, which is analysed mathematically

and simulated numerically.

In Chapters 3 and 5 we give an account of the general analysis for these extensions and
investigate the different dynamics by applying Taylor and Binomial expansions using a
perturbation variable near the bifurcation point i.e. near Rg = 1. We also examine what
types of bifurcations occur at Rg = 1. Backward bifurcation, multiple endemic steady
states and hysteresis phenomena involve a type of bifurcation, that shows an exchange of
stability between infection-free and endemic steady states. We also check if the results
at the critical points are consistent with the results in Chapters 2 and 4. Moreover, we
put our analysis in the models which have been discussed in [14]. Finally, we discuss our

results in Chapter 6.

1.2 The SIR Epidemic Model

The SIR epidemic model was proposed to explain the rapid rise and fall in the number
of infected patients observed in epidemics such as the examples of plague (London 1665-
1666, Bombay 1906) and cholera (London 1865). In this model, it is assumed that the
population size is effectively constant, that means there are no births, deaths or migra-
tion. The incubation period of the infectious agent is considered to be instantaneous, thus
the durations of infectivity and disease are equal. It is also assumed that the population
interacts homogeneously; with no restriction of age, mobility or other social factors [1].
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Starting with the system (1) of the SIR epidemic model; we assume that g = 0, then

we have
© = psi 6
di
i L 5
7 Bsi — i, (3)
dr .
a -

As we assume that the population is of constant size we have 7(t) = 1 - s(¢) - i(¢). The
rate parameters for the transition between the three classes are  and vy (see Sect. 1.1).
The term —(si describes a transmission of infection due to the interaction between sus-
ceptibles and infectives. The term —<i describes the recovery from an infection [3].

Observe that if % < 0 att =0, then there is no epidemic, while if % >0att =0, then
an epidemic occurs i.e. an increase in infective individuals. Also, equation (2) implies
that if the term —(si = 0, then we get either s =0 or i = 0. If =0, then % = 0, which
means an infection-free population will remain infection-free forever, on the contrary if
i1 # 0 and s > %, then % > 0, which is a threshold condition [11]. Therefore an epidemic
occurs for sg > I where sy is the initial number of susceptibles. Thus, the expected

B
number of infections produced by one infected individual is Rg = f—f and s(0) = so [11].

The basic reproduction number Ry determines whether an epidemic is expected to
occur in the population or not, thus an epidemic arises when Roso > 1 as shown in [2].
Moreover, equations (2) & (3) show that

d(s+1) .
dt - 77’7

demonstrating that s+ 4 is decreasing when i > 0 (see Fig. 1). We derive an expression

for the final size of an epidemic. Firstly, we combine equations (2) & (3) to get

di —
& Bsimvi_ 0
ds —0si 0Bs

: v 1
di = (-1+-L)ds=(-1+=—)ds.
= di <1+ﬁs>ds (1+R03> s

Integrating, using the initial conditions, and then taking limits gives,

1
i=—s+72—ologs+K,

3
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5'=-025s31}
i'=0.2551.005}

Figure 1: Phase-Plane for SIR epidemic model when Rq = 5.

Ro

where K is constant and s is the proportion of susceptibles at the end of the epidemic [1].

1 1
K=i0—+-so—72—10g30=z'oo+soo——logsoo. (4)
0

Using equation (4), we plot the solutions to equation (3) in the (s,4) phase-plane
(Fig. 1). In this figure, the epidemic is shown as a curve from the point (sg,0) to the
point (Se, 0). Thus, by setting i = 0 as ¢ — +00 in equation (4), we get z = Sp — Swo, the
proportion of the population infected in an epidemic and then equation (4) equivalently
becomes

1 Soo

S0 S RO og %0

1 Sp — < _
z+,R—Olog< ~ )—O.

Rearranging and assuming that the population is initially fully susceptible sg = 1, we

or

have )
z+ %alog(l —2z)=0.
or
1
Ro + zlog(l —z) = 0. (5)

Equation (5) is known as the Final Size Equation. In this equation if Rg > 1, we have

solutions in the range 0 < z < 1. Note that z may be determined approximated numeri-
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cally, or using Taylor expansions [3].

In Sect. 1.3, we will discuss the SIR endemic model, our main subject of interest.

1.3 The SIR Endemic Model

The main focus of this thesis will be on the SIR endemic model. In epidemiology an
endemic infection is technically defined as an infection with comparatively small varia-
tions in monthly case counts, and only a slow rise and fall over years, such as the case
with leprosy and tuberculosis [3]. In this section, we present the SIR endemic model, and

reproduce qualitative results for different values of Ry, as reported in [12].

Consider the system (1) in which a constant size of population is maintained by a
balance between birth and death rates (i), given as follows:

d

d—j = p— PBsi— ps, (6)
g

= = Psi—7i—u,

dr e i

dt - ’7 :LL,

with r(¢t) = 1 - s(t) - i(t). By observing these equations, we conclude that the average
time of an infection is VJ%#, and as infectious individuals infect others at rate G, the basic
reproduction number Ry = ;f—#

At this point we cover the important parts of the analysis of this model. We do this
by firstly establishing the global stability of each of the steady states of this system.
Consequently we find these steady states and their stability and then analyse them using

bifurcation and phase-plane diagrams.

We prove the global asymptotic stability of the steady state using the classical Poincaré-
Bendixson theorem. Observe that if s = 0, then % = > 0 and if 1 =0, then % =0 and
all other higher derivatives of ¢ are zero. If the region X = {s(t) > 0,i(¢) > 0,s +17 < 1},
then % = —vi < 0 when s+ ¢ = 1, hence biologically we can imagine a triangle to
prove the non-existence of periodic solutions only in the region X (see Fig. 2). In Fig. 2,
arrows along the boundary of A point inward, this shows that any solution beginning
within &, stays within X. Therefore we may use Dulac’s criteria to rule out the periodic

solutions. Consider the expression
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Figure 2. Triangle Invariance of SIR endemic model.
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This equation shows that as —ﬁ < 0, no closed orbits may exist in X. Thus, there exists

a globally asymptotically stable steady state in X

1.3.1 Steady State Solutions

There are two steady states that can be obtained by setting the right hand side of the

system (6) to zero:

p—PBsi—ps=0 (7)
Bsi—yi—pui =0 (8)

Equation (8) gives two steady state conditions, one infection-free when ¢ = 0 and another
endemic, when #s = y+u. We solve these conditions to get the infection-free and endemic

steady states respectively

(s,4) = (1,0),

and
1 p(Ro—1)

(5,0) = (1) = (70 25
An infection-free equilibrium exists for any values of R while the endemic steady states

exist only in the biological feasible region if %o > 1.
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1.3.2 Stability

In this section, we calculate the local stability of these steady states by linearising the
system (6). The Jacobian matrix is found to be

—p—pi —Bs
J = : 9
< Bi ﬁs—(wr#)) )
and when (s,7) = (1,0), we have
- s
Jinfection-free = ( 0# B—(v+p ) (10)

By looking at the eigenvalues of J; it is quite obvious that the infection-free

nfection-free>
equilibrium is stable when 8 < (i + <) or equivalently Ry < 1.

The stability of an endemic steady state

is derived from the Jacobian matrix (9):

_}'J'RO _(P: +’Y) ) (11)

One can easily see that the trace (7) of this matrix is negative and the determinant (A) is
positive as long as Rg > 1. This implies that this endemic steady state is stable whenever
it exists. Observing these results, we see that a bifurcation can take place at o = 1. An
endemic equilibrium exists only when Ry > 1, this gives a forward bifurcation. Thus the

endemic infection only persists for Ro > 1.

1.3.3 Bifurcation Analysis

In the Fig. 3, we have an infection-free steady state ¢ globally stable when Ry < 1 and
unstable when Ry > 1. It is also clear that a unique stable endemic equlibrium arises
from the bifurcation point Ry = 1 and increases as R increases, thus it shows that the
infection free steady state exists for all Ry, while an endemic infection only exists for
Ro > 1. Fig. 3 gives forward bifurcation, so this phenomenon involves a transcritical
bifurcation, thus we conclude that endemic infection only persist for %o > 1.
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Figure 3: Bifurcation analysis for SIR endemic model. Stable infection-free steady state
for Ry < 1; unstable infection-free ¢ and stable endemic steady state ¢* for Rg > 1.

1.3.4 Phase-Plane Analysis

We analyse equations of the system (6), in the (s,?) phase-plane, for different values of
Ro (see Fig. 4). The arrows represent the direction of solutions and a dark black dot
represents the equilibrium point. Dashed lines show nullclines and the dark black line
shows the triangle X. Some plotted curves show solutions of system (6). Observe that

the qualitative behaviour changes at Rq = 1.

o If Ry < 1: The infection-free steady state is globally asymptotically stable i.e.
globally attracting and biologically feasible endemic solutions do not exist in Fig. 4

(a).

e If Ry > 1: The infection-free steady state is unstable and a unique endemic equi-

librium exists, and is globally asymptotically stable in Fig. 4 (b).

1.3.5 Summary

In this section we have shown that if Rg > 1, then an epidemic will occur. We have also
proved that, biologically, an endemic infection can only continue to exist in a population
for Ro > 1. Hence, we conclude that for Ry < 1, the infection-free equilibrium is globally

attracting, this means that if the average number of secondary infections caused by an
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Figure 4: Phase-Plane for SIR endemic model when: (a) Ro = 0.5 < 1; (b) Ro =2 > 1.
Other parameter values are 4 = 0.02 and v = 0.05.

infective is less than one, then the infection will no longer persist. If Ry > 1, then the
infection-free steady state is unstable. Thus the endemic steady state (s*,4*) is globally

attracting only for Rq > 1.

In the following chapter we will consider four extensions of the SIR endemic models.
These four models have an endemic infection that persists for some values of Rg < 1
(which are close enough to one) that leads to phenomena of backward bifurcation, multiple

endemic steady states and hysteresis.
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2 2D Extensions

In this chapter, we will study four extensions of SIR endemic models, their potential for
a backward bifurcation and the presence of sub-critical endemic steady states. We will
also examine the dynamics of these models by varying parameters values.

In these models an endemic infection is maintained in the population when Ry > 1 and
when R equals certain values less than one. The main bifurcation parameter Rq is also
considered as a fundamental epidemiological parameter; while P, as mentioned previously,

is a secondary parameter, whose definition varies between the different models.

2.1 The SIR model with Susceptible R Class

In this model, the recovered R class is susceptible, and possibly even more susceptible, to
infection than the susceptible class, as examined in the paper by Safan et al. [13]. This
model has been used for treatment effects in case of tuberculosis; the infective class in a
population is treated at a constant rate and then proceeds to a recovered class, described

as treatment T in Feng et al. [4]. The system of differential equations is

d
d—j = p— Bsi— s, (12)
di : : :
7 Bsi+ POri— (u+7)i.
with r(t) = 1 — s(t) — i(t). The parameters (§, u, v and Rg = 73“ are as in Sect. 1. The

parameter P is defined as the ratio of transmission probabilities from the recovered and
susceptible classes. In this model, if P = 0, then we have the SIR model, in which the
population has zero susceptibility after recovering from one infection; and if P = 1, then
we have the SIS model, in which the infected class returns to the susceptible class on

removal or recovery, see [13].

In a similar manner to Sect. 1.3, we calculate the global stability of the steady states

by applying the classical Poincaré-Bendixson theorem. Periodic solutions are ruled out

using Dulac’s criterion in (s,i) € X region. Here %ffl = PpBri— vi = —yi < 0 when
s+1i=1and r(t) = 0, thus any trajectory that starts in X stays in X.
0 — Bsi — us 0 (PBri— vyi— ui P
O (ubsizps) 0 (Phrizyizp) kP (13)
ds 51 0i st 524 s

Equation (13) implies that this model does not have any limit cycles in the region X, thus

10




2.1 The SIR model with Susceptible R Class 2 2D EXTENSIONS

the steady state for Ry > 1 is globally stable if it exists.

2.1.1 Steady State Solutions

We begin a qualitative approach to study steady states solutions. In order to get the
equilibrium condition, we set the right hand side of equations in the system (12) to

zero. By factorising these equation we find that the infection-free equilibrium occurs at
(s,4) = (1,0).

The endemic condition satisfies fs + PB(1 — s — 1) — (v + u) = 0. Now, we have two
types for endemic steady states: P = 0; and P # 0. For P = 0 the endemic steady states
are (s*,1*) = (-Rla, ”(Rg"l)), as in Sect. 1.3.1. If P # 0, then we find the endemic steady

states for s* = p Jjﬁ* where #* is found by solving the quadratic equation
: . 1
f(’L*> = 7)7?,0'&*2 + (1 +Pr' — 7)7?,0) 4+ T (“?“é*- — 1) = 0, (14)
0

where I' = &~ If Rg > 1 and P > 0, then f (0) < 0 and there is a unique positive

solution ¢* > 0 with f(#*) = 0. For Rg < 1, we need to solve equations (14) to have better
understanding of the roots for f(i*). We have

(1= PT + PRo) £ 4/(1 + PT — PRo)* — 4PT (1 - Ro)
PRo ‘

gt

N —

We consider the discriminant of f(i*) when Ry < 1, we have three possibilities for the
solutions of f(#*): if the discriminant of f(:*) is negative, then we have no real roots; if
the discriminant of f(i*) is positive, then we have two real roots; and if the discriminant
of f(i*) is zero, then we have one real root. Graphically, the parabola of f(i*) is concave
up and is tangential to the 7*-axis whenever Ry = Rg,qqle and if Ro > Rgyqdles then
the parabola intersects the ¢*-axis. There is still another situation to consider, which

characterises the critical or turning points for P and R,.

2.1.2 Saddle Node Equation
The following is an elaborate from equation (14) to obtain the critical value for P. For
this treating Rg as a function of ¢* and differentiating equation (14). Hence we get

<k

o PRo—PIL—1

2RoP

11
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I 0.02
¥ 0.05
T 0.286
Rsaddle 0.871699
Perit 1.4

Table 2: Parameter values for susceptible R class.

at the critical point we obtain %‘1 o = ﬁp — 1. This gives
u
Pow=14+=
crit v
dR _
when ?*O 1,0 = 0.

Now decreasing R on the horizontal axis in order to find the saddle node equation
for Ro when P > Pgq4. Putting this value of i* back into equation (14), the saddle node
solution, for the value of Rq, becomes

P2RE + ((2—P)I — 1) 2PRo + (1 — PI)? = 0.

The solution of this equation gives R, 4je; the value of Ry where two endemic steady
states with ¢—component ¢_ = i, = ¢* coincide in the turning point (see Fig. 5) only

when P > P¢. For more details see [13].

2.1.3 Stability

In this subsection, we investigate the stability of these steady states by linearising equa-

tion (12). The Jacobian matrix for this model is

_ [ THB —fs
! <ﬁi(1—7’) 58+73ﬁ(1—s—2i)—(u+7)>' (15)

At the infection-free steady state, (s,z) = (1,0), we have a Jacobian matrix as in ma-
trix (10), and from which we have already found that if Ry < 1, then an infection-free
equilibrium is locally stable for all values of P. If Rqg > 1, then we have an unstable

infection-free equilibrium.

Using the endemic steady state for s* and ¢*, when P = 0, the matrix (15) becomes
matrix (11). When Ry > 1, we have 7 < 0 and A > 0, thus the endemic steady state is
stable for P = 0.

12
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For the stability of the endemic steady state when P # 0, we have quadratic solutions

for s% = #+—‘Eh:- and % (see equation (14)). Simplifying the matrix (15) in terms of 3 to

get the matrix

- B
Jendemics = < —H= PR > (16)
€ e % )
naetnic+ Bit (1—P) —PB%
which has
Ty = —p— Ro(p+7)(1+ Py,
and

pRo(p +7)(1 = P)
p+ Rolp+7)ix
We substitute the value of ¢ (see Sect. 2.1.1) in 74 and A,. We calculate that for
P > Perit and for the region between R, 34 < Ro < 1, a stable endemic steady state
exists when 7, < 0 and Ay > 0. For Rg > 1, as 74 < 0 and A, > 0, we have stable

endemic steady state for any value of P.

Ap = | (+Ro(i+7)i5)P +

] Ro(p + )%

Writing matrix (15) in terms of i* we get

—p— it
J . — ptget , 17
endemic— < Bir(1—P) —PBi* ) (17)

this gives
T_ =~ — Rolpe + 7)1 +P)Z,
and
Ro(p+7)(1—P)p
w4+ Ro{p +v)ix

Now, we substitute the value of #* into 7 and A_. For P > Pt and for the region

A = |t Rolut)it)P + ] Rl + )i

between Ry, qdle < Ro <1 we have 7. < 0 and A_ < 0, which indicates the presence of
an unstable steady state. If Ry > 1, the trace 7 < 0 and A_ > 0 for P is both greater

and less than P so we have a unique globally stable endemic steady state.

crit»

Thus, we have two endemic steady states, (s%,4%) and (s*,4* ), in addition to a stable
infection-free steady state (s,7). This shows that this model exhibits backward bifurcation
when P > ,PCI‘it and for Rsaddle <Ry <1.

Now in the following subsections, we study bifurcation and phase-plane analyses using
MATLAB [10] to prove the stability of infection-free and endemic steady states.

13
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Figure 5: Bifurcation diagram for the SIR model with susceptible R class giving curves
(Ro, s*) and (Ro,7*). Broken lines signify unstable steady state while unbroken & dotted
lines are stable ones. Light dark arrow points downward at Ro = Rg,q41e Where two en-
demic equilibriums coincide. The (Rg, s*) and (Ry, ¢*) curves have backward bifurcations

when P > Pt where Pcrit =1+ %

2.1.4 Bifurcation Analysis

As we can see the infection-free steady state is globally stable for Ry < 1 and unstable
for Ro > 1, for all the values of P. If P < Py = 1+ %, then there is a bifurcation
at Rog = 1 into a globally stable endemic steady state and an unstable infection-free
steady state. For P > Pt the bifurcation that occurs at Rg = 1 is ‘backward’. For
Rgaddle < Ro < 1, there is a pair of endemic steady states, one stable and the other
unstable. After this value the curve defining an unstable endemic steady state changes
direction and becomes stable. So, at Rg = 1, an endemic steady state bifurcates from
an infection-free steady state. If P < P, the endemic steady state is stable. At this
point, 4* increases with increasing Ro. At P = Pt (represents as dotted line in Fig. 5),
the curve leaves vertically at Ro = 1 and divides two qualitatively different dynamics, see
Fig. 5.

This model also demonstrates the phenomenon of hysteresis. In Fig. 5, if R increases
from Ro < 1, then at Ro = 1 and P > P, the stable infection-free steady state jumps
straight up to ¢* and down to s*, the stable endemic steady state. If Ry subsequently
decreases, 7* decreases and s* increases to Ro = Rg,qdle, then a stable endemic steady
state jumps straight down for ¢* and up for s* to a stable infection-free equilibrium.

14
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Figure 6: Phase-Plane for the SIR model with susceptible R Class for P = 0 < Pit
when: (a) Ro=08<1; (b) Rg=1.2>1.

2.1.5 Phase-Plane Analysis

We now investigate the above results by plotting phase-plane diagrams for different Rq and
P, using equations (12). We separate Rq into four different regions: P = 0; P = i%iﬁ;
P = Poit = L+ 5;
in the triangle region A'. Small arrows in the following figures show the direction field,;

and P > Pt In these phase-planes, we specify the solutions

dashed lines are nullclines; the black dot represents the equilibrium point; dotted arrow
shows Ry, 4q]e; dashes lines are unstable; and continuous lines are stable. Notice that for
P = 0, we have the same phase-planes as in Sect. 1.3 this is because the susceptible R

class degenerates the classical SIR model.
1. P=0

Ro < 1: A stable infection-free steady state is present as in Sect. 1.3.4, see
Fig. 6 (a).

Ro > 1: An unstable infection-free equilibrium and a stable endemic steady

state are present as in Sect. 1.3.4, see Fig. 6 (b).

P .
2 P=-gt

e Ry < 1: A stable infection-free steady state exists in Fig. 7 (a).

e Ry > 1: An unstable infection-free and a stable endemic steady states in
Figure 7 (b). Thus we have found that for some values of P < P, these

dynamics are similar to dynamics for P = 0.

15
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Figure 8: Phase-Planes for susceptible R class for P = P_,jt when: (a) Ro = 0.8 < 1; (b)

Ro=2>1.
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Figure 9: Phase-Planes for susceptible R class for P = 2.8 > Pt when: (a) Ro = 0.5 <
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Figure 10: Phase-Planes for susceptible R class for P = 2.8 > Pyt when: (a) Rgyqqle <
Ro=092<1; (b) Ro=2.
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3. P =Perit
e Ry < 1: Only a stable infection-free equilibrium is present in Fig. 8 (a)

e Ry > 1: An unstable infection-free steady state and stable endemic steady
states are present in Fig 8 (b).

4. P> pCI‘it

® Ro < Rggddle: Only a stable infection-free equilibrium is present in Fig. 9 (a).

o Ry = Rsaddle = 0.871699: A stable infection-free steady state exists. Another
equilibrium point shows two endemic steady states which are top of each other
at this value of Ry, qq1e- The nullclines are tangential to each other.

® Roaddle < Ro < 1: An stable infection-free, two endemic both stable and
unstable exist in Fig. 10 (a).

e Ry > 1: An unstable infection-free steady state and one stable endemic steady
state are present in Fig. 10 (b).

2.2 The SIR model with Nonlinear Transmission Class

The SIR model with nonlinear transmission of infection is explained in detail in Gomes et
al. [6]. In this model, we show that the transmission function of any infection satisfies the
biological conditions that lead to the system with an asymptotically stable steady state
[8]. The differential equations are written as

ds

e — — 1
g = As — ps, (18)
ds .

Zi? = \Ss— (/J/ + ')’)Z

with r(t) = 1 - s(t) - i(t) as above. Take A = Bi(1+ A(7)) as a nonlinear force of infection
for some increasing function h. This function A(¢) is defined as the increase in risk of
infection with the intensity of exposure, and if A(z) = 0, then we have a standard force

of infection A = Bi as analysed in [6]. We have assumed that A'(i) > 0. Thus considering

Pt
TP

h() using a functional form h(i) = 75 in order to get useful illustrations; here we use

P as a secondary bifurcation parameter. The basic reproduction number Rq = =

unchanged.

In order to find the global stability, we consider the triangle A as an invariant set

such that X'= {s,i € R?|(s,4) > 0;(s +4 < 1)}, then d(s"") =u—pu(s+1) —vi <0 when

s+ i = 1. We use Dulac’s criterion [2] that states that 1f the sign of as % is constant

18
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in a simply connected region X, of the phase space, then limit cycles cannot exist in the
0 {u—As— us 0 [(As—yi— ui 0 PG
-y DR S — = =t T 5 19
Js ( st ) 5 < st s?t  (1+Pi)? (19)

As the above expression changes sign in the region A, by using Dulac’s criterion and

region.

the Poincaré-Bendixson theorem. Thus, we cannot exclude limit cycles and cannot say if

the nontrivial steady state is globally asymptotically stable for the function h(i) = F5;.

Thus, any conclusion about the existence of limit cycle, cannot be drawn and, in this case

Dulac’s criterion fails.

Note that in some cases, we do not apply Dulac’s criterion to this model, as there are
some functions A(7) that may lead to limit cycles surrounding the nontrivial equilibrium,
as demonstrated in Gomes et al. [6]. Gomes provide a theorem stating that there may
exist at least one limit cycle derivable from the function A(¢). Correspondingly if A”(z) < 0
and h”(7) > 0, then we have at least one limit cycle surrounding the equilibrium provided

R'(0) < @ and A"”(0) > 81(;1:7) _ 3fﬂ(0)£u+~,)_

We apply this theorem for the function A(i) = lf;i. If ¥(0) =P < @, then

h/l(o) < 81(u+y) _ 3R (0)(p+7) . and if h/(o) =P > (uty) then h,,(o) > 81(u+y) _ 3R (0)(u+7)

ap I3 ’ w2 4p 7 ’
this shows that this theorem fails. This theorem is helpful if any limit cycle exists for
the function A(z), however, the theorem does not say what happens if this theorem fails.

Thus the nonexistence of any limit cycles for any value of the parameter P, when Ry > 1

remains in question.

2.2.1 Steady State Solutions

A steady state can be found by solving the system (18), with the right hand sides set to

Zero.
p—B(14 h(z))si — ps =0,

B(1 + h(4))si — (u +7)i = 0.

We get an infection-free equilibrium at (s,7) = (1,0) asin Sect. 2.1. For all P, the endemic

steady state is the solution of:

1

T RO 0
_ ! (+ )"
DT RarRen T e (21)

19




2.2 The SIR model with Nonlinear Transmission Class 2 2D EXTENSIONS

We may find either a unique positive solution or multiple solutions for equation (21),
depending on the function A(z). Now, if P = 0, then we have the same endemic steady
state as in Sect. 2.1. And for any other values for P, we have endemic steady states for

i* and s*. We solve equation (21) in quadratic form, using h(i) = 1-%;"

f(#*) = 2PRyi* + (Ro — 2PReI + PI)i* + I'(1 — Ro) = 0, (22)

. 1+ Pi*
S = e
Ro(1+ 2Pi*)

where I' = £ as in Sect. 2.1. For the function h(i) = Zf;, we find that f(¢*) has a

unique positive solution ¢* > 0 for f(0) < 0 whenever Ry > 1. But if Rg < 1, then we

have a more complex situation so in order to get a better analysis, we solve equation (22)

to get

1 (2PRol’ = Ro — PT) £ /(Ro ~ 2PRoT + PI)2 — 8PRoI(L — Ro)
4 PRo

i
Whenever Ry < 1, we have three possibilities for the solutions of f(¢*). If the discriminant
of f(i*) is positive then we have two real roots and if negative then we have no real roots.
If it is zero then graphically, we have a concave up parabola of f(i*) which is tangential
to the ¢*-axis. At this point we have Ry, jq)e that makes the parabola tangential on the

1*-axis.

In the following subsection, we will calculate the critical values for P and Ry, qqe-
Also we analyse the turning points where the backward bifurcation occurs.

2.2.2 Saddle Node Equation

To determine the direction of bifurcation at the critical point, we solve equation (21)

treating Ro as a function of ¢*, giving a value for

_ 2PRe['—Ro— PT
B 4PR, ‘

>k

If we set Rg =1, i* =0, then %

g -4ty W(0). As 2% <0, thus

(1,0) — W

v
K (0) > Pepit =1+ ;
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7 0.02
¥ 0.05
T 0.286
Rsaddle 0.9519197
Pcrit 35

Table 3: Parameter values for nonlinear transmission class.

This gives the critical value of P, and for P > P.pit, we calculate the saddle node
equation for Ry. Putting the value of ¢* back into equation (22) to get

Ro = (2PT + 1)*R2 — 2PT(2PT + 3)Ry + PT? = 0.

This equation solves for the value of Rg,44je- Thus, when P > Ppip and Rgyqdle <
Ro < 1, a backward bifurcation occurs. We will calculate the stability of infection-free
and endemic steady states in next subsection.

2.2.3 Stability

We linearise the system (18) in order to study stability of these steady states. The
Jacobian matrix is given by

L < —p—=Bi(1+h(E)  —=Bs(1+ih'(5) + h(5)) _ (23)
Bi(1+h(3))  Bs(L+h' (@) + @) = (1 +7)

For the infection-free steady state (s,i) = (1,0), this Jacobian matrix is the same as
the matrix (10). Thus, for Ry < 1, (s,7) = (1,0) is stable and; for Rg > 1, it is
unstable. To study the stability of the endemic steady state for P = 0, we set (s*,i*) =

Rio, ﬂﬂ%__l)> The Jacobian matrix (24) is same as the matrix (11) and possess the
same stability for Rg > 1 i.e. we have stable endemic steady state for Rg > 1 for the

parameter values given in Table 3.

When P # 0, we have the endemic steady states (see equations (20)), (21)). We find
the Jacobian matrix and solve it for the function A(¢*). Thus we have

_ Roif {(p+7)(1+2P4 ) (u+7)(14+4Pi3 +2P%%2)

_ . B 1+Pif (1+P¢ ) (0+2P)
Jendemlc+ - Roth (u+y) (1+2P1) (ﬂ-lj:y)’Pij_ 3 (24)
T+Pe, (1+Pi% ) (1+2P1%)
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with . " "
- Rotipt NA+2PE)  (pF )P

1+ Pit, 1+ P)1 + 2Pt )’

Ty = —

and determinant

(b +7)i% [ARoe P2 (1 4+ v) + 4Roi% P+ ) + Ro(p + ) — 1P)

A, =
* (1+2P)(1 + Piz)

Substituting the value of 4% and the parameter values from Table 3 in 7, and Ay to
evaluate Jopdemicy (24). We find that for P > Pt and Ry gq1e < Ro < 1, a stable
endemic steady state ¢ exists. For Rg > 1, we have only one stable endemic steady state

as Jg (24) has only real negative eigenvalue for any P.

ndemic+

Putting the endemic steady state ¢* in the matrix (23) to get

 RoiL(uAm(I42Pit)  (uby)(1+4PiL +2P%2)
_ 1+Pi* (1+Pi%)(1+2Pi%)
Jendemic— = Roi* (u+y)(1+2Pi* ) ()P , (25)
1¥Pi~ 1Py (1+2Pi%)
We get
o, Rett(pt )+ 2Pi) (b +7)Pix
-TTH 1+ Pir 1+ Pir)(1+2Pir)’
and .
A = BRI P (i + ) + 4R P +7) + Ro(p +7) = 4P

(1+2P*)(1+ Pix)

By substituting ¢* into 7_ and A_, we find that 7 < 0 and A_ < 0 whenever P > Ppit
and Rgyddle < Ro < 1, hence an unstable endemic steady state ¢* exists. Additionally,
if Rg > 1, then we have stable endemic steady states for any P. Thus, for P > P+ and
Rgaddle < Ro < 1, we have multiple endemic steady states.

2.2.4 Bifurcation Analysis

The dynamics of this system are similar to those of the susceptible R class described in
the previous Sect. 2.1. So for the bifurcation analysis we refer the read to that Sect. 2.1.
Fig. 11 illustrates same dynamics as Fig. 5 that a backward bifurcation occurs at Ry = 1,
this refers to sub-critical endemic steady states (shown as dashed and solid black lines)

and a stable infection-free equilibrium.

2.2.5 Phase-Plane Analysis

In this section, we analyse the system (18) using a (s, 7) phase-plane, the methodology
is similar to that of Sect. 2.1. We find the force of infection (A) by calculating the
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Figure 11: Bifurcation diagram for the SIR model with nonlinear transmission class.
Labels are as in Fig. 5. For this class, Pyt = 1 + %

function h(i) = ff%ﬁ to plot the phase-planes. We have plotted several phase-planes by

categorising Ry in different regions and using different values for P.

1. P=0< PCI‘it

e Rp < 1: A stable infection-free steady state (s,i) = (1, 0) exists in Fig. 12 (a).

e Ry > 1: An unstable infection-free and a stable endemic steady states exist in
Fig. 12 (b).

P .
2. P = lait

e Rp < 1: A stable infection-free steady state exists in Fig. 13 (a).

e Rp > 1: An unstable infection-free and a stable endemic steady states exist in
Fig. 13 (b).

3. P =Perit

e Ry < 1: A stable infection-free steady state is present in Fig. 14 (a).

e Ry > 1: An unstable infection-free steady state and a stable (spiral sink)
endemic steady state (s*,4*) are present in Fig. 14 (b).
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Figure 12: Phase-Planes for the SIR model with nonlinear transmission class for P = 0 <
Pepit when: (a) Ro=0.8<1; (b) Rg=1.2> 1.

a) b)

SR 00 BN  am s} (1 2R M 4 P s mag) geeRaeQS 3 REUs e S 2R ML e P Rty g eusler  gEme»dds
1R RTE S 2 PSP g gemayt B35 ROw03 PRREUIPSTN S 20741 s P - (o e pamajf P=1 RI=12

Ty A S Bt B S R

Figure 13: Phase-Planes for nonlinear transmission class for P = ?Czlit when: (a) Rg ==
0.8<1;(b) Ro=1.2> 1.
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Figure 14: Phase-Planes for nonlinear transmission class for P = 3.5 = Pt when: (a)
Ro=08<1;(b) Ro=12>1.
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Figure 15: Phase-Plane for nonlinear transmission class for P > P 5 when: (a) Ro = 0.5;
(b) Ro = Rgyqqdle = 0.951919.
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Figure 16: Phase-Plane for nonlinear transmission class for P > P, when: (a)
Rgaddle < Ro=0.96 < 1; (b) Rp=1.2>1.

® Ro < Rgaddle: Only a stable infection-free steady state is present in Fig. 15
(a).

e Ry = Rsaddle = 0.951919: A stable infection-free steady state and two en-
demic steady states (represent as a single black dot) that are on top of each
other, exist in Fig. 15 (b). The endemic steady states change their stability at
this point.

® Rogddle < Ro = 0.96 < 1: A stable infection-free steady state and two
endemic steady states (both stable and unstable) exist in Fig. 16 (a).

e Ry > 1: An unstable infection-free steady state is present in Fig. 16 (b).

2.3 The SIR model with Exogenous Infection Class

This model is one of the special cases proposed in a paper by Feng et al. [4]. In model,
a new class is included, the Exposed (E) which represents those that are infected but
not yet infectious. The proportion of the exposed class is denoted by e(t). To keep this
model two dimensional, we assume that those in the infectious class will remain in the

infectious class, hence we do not need the removed class (R) and its proportion 7(¢) = 0.
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This model is defined by

ds

— W — Bsi — us, (26)
d

d_: = fsi—PPei— (u+ Ve,

% = Plei+ ve — .

with e(t) = 1 —s(t) —4(¢). If P =0, then this model is a standard SEI model [12]. The
parameters § and u are the same as in the Sect. 2.1 and Sect. 2.2. The parameter v is a
rate at which an individual, who has been exposed to infection, becomes infectious in the
absence of reinfection. The expression PfSei models the exogenous reinfection rates with

parameter P that represents the level of reinfection. In this model, the basic reproduction

Bv
w(ptv)”

number is Rg =

In the Sect. 4.1, later we will cover the SEIR model, a three dimensional model where

we have four classes: Susceptibles (5); Infectives (I); Removed (R) and; Exposed (E).

Now studying the global asymptotic stability of the system (26) using Dulac’ s criterion
di de

in the region X. If s = 0, then % =p>0ifi=0and s =1, then 3,5 = 0. Thus

the invariant region X ={0 < s(t),%(t) < 1,e(t) = 0, s +¢ < 1}. Dulac’s criterion for this

model is
0 (u—Psi— us 0 (PR(l—s—iYi—vi—ui w PR vl -s)
— )+ : =-L =
ds ) a1 st 523 s 512

This expression is less than zero for positive 0 < s < 1, hence, the steady state is globally

asymptotically stable for Rq > 1.

2.3.1 Steady State Solutions

We determine the infection-free and endemic steady states by setting the right hand side of

equations (26) to zero. The infection-free steady state is the same as before, that is (s,4) =

(1,0). For the endemic equilibrium, when P = 0; we have (s*,i*) = 7—21-5, ‘u(%_—lv

and when P # 0; we have the endemic steady state for s* = ﬁ, where ¢* is in quadratic
form.
2
1 —Rg)
) = PR 4 UPRy 4+ L R0 0, 27
f( ) 0 0 P.',(ru + U) ( )
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7 0.02

v 0.05
Rsaddle 0.9838

Perit 8.75

Table 4: Parameter values for exogenous infection class.

where U = (% + 731/—_%/7 — PR0> . In equation (27), f(i*) gives a unique positive solution

for ¥ > 0 whenever Rog > 1, as f(0) < 0. If Ry < 1, then we solve f(:*) for a better
understanding. A quadratic solution for #*

~UPulp+v) £ /UP2 g+ v)2 + (Ro — AP+ v)
2PRop(p + v)

i = .
We calculate the discriminant of f(i*) to determine the behaviour of f(7*). If the discrim-
inant of f(¢*) is negative, then no real roots exist; while there are two real roots, when
it is positive. If it is zero then we have one real root which is tangential to the ¢*-axis.
At this point we solve for R, jq]e from the saddle node equation of Ry which we will
calculate in the next subsection, along with the critical value of the parameter P.

2.3.2 Saddle Node Equation

To find a critical value of P, we differentiate equation (27), treating Ry as a function of

1™, we get
PRo— P—— — 2
. ptv  p
2PRy ’
and setting (Ro,7*) = (1,0). Then, we have
v(v +p)
Perit = =7

Thus we have the critical value of P. Now to find two endemic steady states when P >
Perit, for some values of Rg < 1; we estimate the saddle node equation by differentiating
equation (27) with respect to Ro, getting i* provided &2 = 0, that gives
5 2
272 _ ¥ __V_p_ ¥ _ v_p_# )\ _
PR + <2u(#+u) z P#H) 2PRo+ (4 —Prlt) =0.
This equation solves for R, qqle; that makes the parabola of f (:*) tangential on the
1*-axis. Next we review, in detail, the local stability of these steady states.
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2.3.3 Stability

In this subsection to investigate the stability of the infection-free and endemic steady

states, we linearise equations in system (26) to find the Jacobian matrix

—p— Bi —Bs
J = <_7>,a¢_y fpﬁ—ms—zm—ww))' (28)

For the infection-free steady state (s,%) = (1,0), the Jacobian matrix becomes

—-u =B
Jinfection-free = ( v —(p+v) > : (29)

Now this matrix have 7 = —2u—v, and A = (1—Ry)(uv+u?) respectively. If Ro < 1, then
trace is negative and the determinant is positive, meaning that the infection-free steady
state is stable. If Rp > 1, then the infection-free steady state is unstable as 7, A < 0.

The Jacobian matrix for the endemic steady state, when P = 0, is

iRy ——H—
J - vip+v) | 3
endemic ( .y () ) (30)

This matrix has 7 = —u(Ro+ 1) — v and A = (Ro — 1)(uv + u?) respectively. If Ry > 1,
then 7 < 0 with A > 0. Thus the endemic steady state is stable for Ry > 1.

To study the endemic steady state for P # 0, we put the value for s* in the Jacobian

matrix (28) in terms of #*,

o ,BZ* __ﬁ.L_
7 . _ K + u+pY .
endemic+ —PBi* —v PB — (2PBi% + #igfi +p+v)

This has
. "Pﬁzij_ — (2P + l)ﬁgz‘i — 2PPip — v, — uv — 3ufit — 2
' i+ P ’
. . . ) . ‘ PHi* +
Ay = (2PBEp — 2PB* — PO, + vPBiy + pv + pfiy + 1) — ML fZEZ-* 1),
+

Evaluating the above Jacobian matrix by substituting the value for 5 and using Table

4 for parameter values, we find that 7, < 0 and Ay > 0 for P > Pt and Ry qdle <
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Exogenous Infection Model Bifurcation Diagram
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R,

Figure 17: Bifurcation diagram for the SIR model with exogenous infection class. Labels
are as in Fig. 5. The critical value of P for this class is ﬂ’ﬁﬂ

Ro < 1. Hence, we have a stable endemic steady state ¢}. For %o > 1 and all P, the

endemic steady state is stable.

J _ _ —p = B Hf;if.
endemic~ ~PBi —v PB— (PP + At putv) |
This has
_ PP — (2P + 1)F%% — 2PBitp — vfBit — pv — 3ufit — 2u*
- ©+ Gir ’
and

_ Bu(Pp +v)

A = (2PBitp — 2PP%* — POYT + vfit + uv + pBit + 1) :
1+ Git

We find that for P > Pt and Rgyqqle < Ko < 1, an unstable endemic steady state
1* is present as 7_, A_ < 0, while endemic steady state is stable for %o > 1 and for any P.

Thus we have multiple endemic steady states for P > P and Rgyqqle < Ro < 1
and only a stable endemic steady state for all P and g > 1.
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Figure 18: Phase-Planes for the SIR model with exogenous infection class for P = 0 <
Perit when: (a) Ro = 0.6 < Ry, qqle; () Ro = 2 within triangle s +4 = 1.

2.3.4 Bifurcation Analysis

The stability of the infection-free and endemic steady states for all values of Ry and P is
the same as in Sect. 2.1 and Sect. 2.2. Figure 17 illustrates the asymptotic behaviour of
these solutions to the system of equations (26). Again, the dynamics are similar to those
in Sect. 2.1.

2.3.5 Phase-Plane Analysis

Now, consider the triangular region A and plot phase-planes so that we can develop a
better understanding of the above results. Again we categorise based on different values
of Rop and P. Arrows show the flow of the solutions; dashed lines represent nullclines;

and black dots are steady states. This model gives similar results to those in Sect. 2.
1. P=0

o Ro<1
A stable infection-free steady state is present in Fig. 18 (a).

e Rp>1
There is an unstable infection-free steady state and a stable endemic equilib-
rium in Fig. 18 (b).

2.0<P <7)Cl‘it
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Figure 19: Phase-Planes for exogenous infection class for P = 5 < Pgp¢ when: (a)
Ro=0.6 < Rsaddle; (b) Ro=1.2.
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Figure 20: Phase-Planes for exogenous infection class for P = P4 = 8.75 when: (a)
Ro=0.6 < Rsaddle§ (b) Ro = 2.
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2 2D EXTENSIONS
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Figure 21: Phase-Planes for exogenous infection class for P = 14 > P,y when: (a)
Ro= 06 < Rsaddle; (b) Ro=0.9838 = Rsaddle'
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Figure 22: Phase-Planes for exogenous infection class for P = 14 > P..jt when: (a)
Readdle < Ro =099 < 1; (b) Ro = 1.2 > 1 is of interest.
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e Rp<1
A stable infection-free steady state in Fig. 19 (a).

o Rog>1
A stable endemic and an unstable infection-free steady states are present in
Fig. 19 (b).

3. P = Perit

o Ro<1
A stable infection-free steady state is present in Fig. 20 (a).

e Rop>1
There are two equilibriums: an unstable infection-free and a stable endemic

steady states in Fig. 20 (b) .
4. P> PCl"it

* Ro < Rsaddle
Only an infection-free equilibrium is present in Fig. 21 (a).

e Ro=TRgyqdle = 0-9838
A stable infection-free steady state exists while there are two endemic steady
states exist which coincide with each other in Fig. 21 (b).

* Rsaddle <TRo <1
There are stable and unstable endemic steady states and a stable infection-free

equilibrium in Fig. 22 (a).

e Rop>1
An unstable infection-free and a stable endemic steady states are present in
Fig. 22 (b).

2.4 Summary

We conclude that in two dimensional extensions of the SIR endemic model: R class sus-
ceptible in Sect. 2.1; nonlinear transmission class in Sect. 2.2; and exogenous infection
class in Sect. 2.3, for Rg > 1, there is an unstable infection-free steady state and a unique
stable endemic steady state, with a forward bifurcation at Rg = 1 when P < Pgrijt. A
backward bifurcation occurs at Ro = 1 when P > P_,j;. We have found some sub-critical
endemic steady states when R qqe < Ro < 1 and P > Ppit- Thus, these models
exhibit the dynamics of backward bifurcation; multiple endemic steady states; and the

phenomenon of hysteresis for certain values of Ry less than one.

34



2.4 Summary 2 2D EXTENSIONS

In Sect. 2.2, the SIR model with nonlinear transmission class have a function h(z)
that may lead to the presence of a limit cycle about the steady state. From [6], we have
applied a theorem that fails to prove the existence of any limit cycles for the function

h(i) = 1f;i' However, we have also applied Dulac’s criterion which fails to exclude any
limit cycles. This criterion can not tell us about the global stability of the non trivial
steady state in this case. However, from the calculation of the stability of infection-free
and endemic steady states, the bifurcation and the phase-plane analyses, we have found

that this model also possess a backward bifurcation phenomena.
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3 General Analysis of 2D Models

In this chapter, we will examine several two dimensional extensions of the SIR endemic
model: R class susceptible; nonlinear transmission class; and exogenous infection class,
in a general manner and using a matrix framework.
Consider the ODE system .

M

= —My + f(y). (31)

? > and f(y) is a vector-valued

where M is a non-singular 2 x 2 matrix, y is the vector <
)

function. At the endemic steady state dE}ti =0, —My + f(y) = 0, where Ry is the same
parameter used previously. Hence, we calculate M and f(y) in such a manner that Ry = 1
defines a bifurcation point with either a forward or a backward bifurcation. Given these

conditions, we have applied Taylor and binomial expansions to obtain results, using i* as

a small perturbation variable, about the infection-free steady state y = 0

The basic idea in this chapter is to apply a perturbation technique to compare the
previous bifurcation analysis for endemic steady states; and to establish that these per-
turbation results agree with the summary in Chapter 2. This will lay the framework for

a general analysis model of these types.

3.1 Susceptible R Class

Consider the ODEs for a susceptible R class as given in Sect. 2.1 (see equations (12)).
and P is the ratio of transmission prob-

Taking basic reproduction number Ry = 7 _*?_ ~
abilities from the recovered and susceptible classes. Rescaling time so that p = 1 we

rewrite equations (12) as

d

E; = 1—TRoAsi—s,

ds . N .

il RoAsi + PRoA(l — s — 1)i — Ai,
where A = *”::—7 (See Table 5). Separating linear and quadratic terms, we have equation
(31) where,

M= 1 0 ,
0 A(l —PRo)

and

1-— RoASi
1) = < RoA(si — P(s + 1)i) > '
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Notation Description

A [ e

¢ pty

D (b + o+ 7)
7%

D w+v

5 o

B ptd
1

o (p+v)(p+7) =k
w

F ¥

: :

Table 5: Frequently Used Notation in Chapters 3 and 5

Setting time derivatives of this matrix system to zero we have

%(j)=0=$-My+f(y):O. (32)

*

s
At a steady state when y* = ( -,

>, equation (32) becomes
i

y© = M7f(yY) (33)

e [ S 1 — RoAs*i* (34)
Y i* Ro(s%1* — Ps*i* — Pi?)(1— PRo)™ |

Applying a Taylor series expansion about i* = 0, to s* and R we gain quadratics expres-

sions in ¢* and ignore cubic and higher order terms.

Thus

RO = 1+ i*Rm + i*QRgg + O(i*s), (35)
S* — 1_*_2*8;_1_,&*23;_{_0(2*3),
Ros** = i* +i2(Roy + 5%) + O(F).
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Substituting these back into equation (34) to get

. 1+ 3*st + *2s%
y* = .

1— Al +#2(Ro1 + 7))
(" + % (Ro + $1))(1 = P) = P (1 = P — "PRoy — **PRe2) ™" |

Now taking (1 — P)~! out as a factor in row 2, we apply the binomial expansion to the

inverse exponent to get

y* = ( ( 1 — A" + % (Ro1 + 7)) - ) } (36)

4+ H(Roy + 8%) — 5502) (1 —

Pk ;2 . . . . . .
where z = (“ l'P _?;m + 1 Z‘%‘”) . Using the Binomial expansion to find an approximation

(1—2)' = 1+z+25+0()
PRoi"  PRai? PRy

%
—p T i=p T aope O

= 1+

and neglecting higher order terms, we rewrite equation (34) to obtain

. 1+ st +1*2s} 1— A(#* +*(Ro + 1))
y = e = e o PR * :
2 7" +1 2(1‘T%+81+R01—1—1375>

1 % 8,1( %2 83
+
1 -A : —-A(si +R
= + 4 +77 | o, (*Sl o1) > |-
0 1 1—'_'7} + sT+ Rol -]

Comparing equal powers in terms of the perturbation variable ¢*

or

3’1‘ =-A< 0,8; = —A(S,{ +R01),

P PRa
1-P 1-P

*
81

- Ro1. (37)
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R class Model .
* (3 o
8 =1+i{s1+i2%, Ro=1+iRn+ i2Re2

I L os'<0

\ Roy <0 ", By >0

Figure 23: Enlarged top-center part of Figure 5. A clearer view for sj < 0, and the values
for Ro1 as we perturb the variable ¢*. Unbroken lines show stable steady states while
broken lines signify unstable. The curve R, < 0 when P > P and curve Ro1 > 0
when P < Perit-

At the critical value of P, Rg; =0, st = —A then equation (37) becomes

y oty
P= I:A: 1_ (p‘:“{)'
I
and hence
Perit = 1+%

o If P > P4, then Ro1 < 0 and a backward bifurcation occurs.

o If P < Peyit, then Ro; > 0 then a forward bifurcation occurs.

This is the same as in Sect. 2.1, and is illustrated in Fig. 23. This sketch shows that using
the Taylor series expansion, we have found results consistent with those in Sect. 2.1.

3.2 Nonlinear Transmission Class

In this section, we will investigate the nonlinear transmission model using a general frame-
work. We review the system of ordinary differential equations (18) in Sect. 2.2. with
nonlinear force of infection ‘A = Fi(1 + h(¢))" and h(i) = i f%Pz For more details see

Sect. 2.2 and Gomes et al. [6]. Ry = (#fﬂ and P are as in Sect. 2.2. We rewrite the
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equations (18) as

ds

7 = K= Rolp+ 7)1+ h(1)si — ps,
% = Ro(p+7)(1+ h(i))si — (w+ 7).

Rescaling time, so that © = 1 we have

ds ([ 1+2Ps
o = 1—720Asz<1+737;>—s,
di [ 14+2Pi .
T ROASZ<1+P2'> — Ai,
where A = “::—" and 1+ h(i) = Y24 In matrix form, we consider equation (31) where
1 0 S 1 — RoAsi (H22:
M=<o A>,y=< .>,f(y)=( oo ig;f*)>
v 0Asi ( 1+Pi )

S*
Setting %% = 0, for a steady state y* = ( - >, equation (32) becomes

_ 1 0 1 — RoAs*i* (258
*— M 1 *\ — 1+ 7P )
Y f(y ) < 0 A! > ( R As*i* (1-{-2731 ) >

1+Pi
Hence
1+ Pi* — ARgs** — 2P ARys" 1™
y* = 1+ P _
Ros*i" + 2PRys*i*”
1+ P

Using the binomial expansion (1+P5*)~! = 1 — Pi* + P?*2 + O(i*3) and ignoring higher
order terms, we get

w [ S\ _ [ 11— ARes™* — PARys*i*? (38)
Y 7 Ros** + PRos*i*? '

We apply a Taylor series expansion, in equation (38) finding quadratic terms for s* and
Ro, using a perturbation variable i*. From equation (35), we have s*, Ro and Rps*i* so
we expand Ros*i*? = i*(i* + *2(s¥ + Ro1)) = 1*2 + O (4*3). Ignoring higher order terms,
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Non linear Transmission
N et I o
S =1l+isi+i?% Ro=1+iRu+ ?Re2

’
’ -
'3
f
s .
K\OI ) - ‘- Bay >{ -\

Figure 24: Enlarged diagram taken from Fig. 11. Labels are as in Fig. 23.

we substitute these values back into equation (38) getting

ok

i i* 4+ *2(sf + Roy + P)

1 Sk 5,1( %2 SE
V) [ ) ppe [ ARa+sI-P)
0 1 RQI + Sif +P

Comparing terms with equal power of i* we get

g < 1+ i*s} + s} > B < 1 — A(#* +i%(s + Roy — P)) >

or

st=—-A<0,85=—A(Ror + 51— P),

S; = —P—Rm. (39)
At the critical value of P, Ro; = 0 we have s = —A. Thus, equation (39) becomes
P=-s=A
Perit =1+ %

o If P > Prpit, then Ry < 0 and a backward bifurcation occurs.

o If P < Peyit, then Ro; > 0 and a forward bifurcation occurs.

These results are consistent with those in Sect. 2.2. Fig. (24) shows that a backward
bifurcation occurs when Rg; < 0, while forward bifurcation occurs when Rq; > 0.
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3.3 Exogenous Infection Class

In this section, a system of differential equations for the SIR model with exogenous infec-
tion class is studied. We consider the ordinary differential equations from Sect. 2.3.

ds :
di
E% = PB(1—s—i)i+v(l—s)— (u+v)i.

RO—(’qu—_M and the parameter

We rescale time to have u = 1. The transmission rate 8 =
P are as in Sect. 2.3. Substituting 8 in equation (40) we get

ds

E = 1-— R()@S'Z: — S,
di _ C _
B R B(l—s—iit S(1— s i
o PRoD(1 —s—1)i+ D(1 s)—Ci

See Table 5 for notations D and C. In order to obtain matrix form, we take equation (31),

where

g 1 0 s 1 — RoDsi
a -% C~PRD |7 T\ i )= —'P’Rgﬁ(s+i)z’+% '

*

s
Setting ‘é—’t' = 0, for a steady state y* = ( . >, we have equation (33).
i

1 — RoDs*i*
Y =M7'fy)=| (Ros*i*(C — PD) — PDi*?) |- (41)
(C —PRoD)

We apply a Taylor series expansion for s* and Ry, using i* as a perturbation vari-
able.Ignoring cubic and higher order terms and substituting the quadratic terms from

equation (35) back into equation (41) to get

o 14irsy it
y* = o

1-— @(Z* + 'L.*2(S’1( +_R01))
= [ [(&"+¢*(s] + Ro1))(C — PD) — PDRo11*]
(C —PD — i*PDRy, — #**PDRuz)
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Taking (?%7 as a factor from row 2 to have
1 - D(* + (s} + Ror))
v = (g (st + Ry — %T)_iz%%?) PERE (42)
where

C-PD | C—pD

At this point, we apply a binomial expansion to obtain an approximation

(PTD’R,M?:* 77?5?2023'*2)
Z = .

PDRo1 .,  PDRos 2 P’D°RY, .o

dl 1 il 2 _ - OA*3'
c—pp te—pp tEeopppt O

1-27' = 1+

Again we ignore cubic and higher order terms and substitute this back in equation (42)

to obtain

1 — D(5* 4 5*%(s* + Ro1))

y' = st ) PD(Ro1 — 1
i* i + 32 <s’{+’}201+———~——-—c_°7131; )> ’

or
1 + i S’{ + ,L'*Q 85
0 1 0
? ¢ " PD —1 -
° ! st + Roy + LR
Comparing terms
st =-D < 0,85 = —=D(s1 + Ro1),
PDRu PD
= = + 57 - = = = () 4
c_pp it R0 Ipp (43)
At the critical value of P, Ro; = 0 we have st = —D and equation (43) becomes
— I+ v
p € ___ &
1-D —H
%
_vlpt+vy)
Perit = =7
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Exogenous Infection I’\':(odel
. & » »
8 =1+is1+i¥s, Ro=1+iRe+ ?Rez

Figure 25: An enlarged top-center portion of the bifurcation fig. (17). Labels are as in
Fig. 23.

Thus, we conclude with the following results
o If P > Perit, then Ry < 0 and a backward bifurcation occurs.
o If P <Perit, then Ro; > 0 and a forward bifurcation occurs.

These results are consistent with those in Sect. 2.3. It is clear from Fig. 25 that Ro; < 0

gives backward bifurcation, while Ry > 0 gives forward bifurcation.
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4 3D Extensions

In this chapter, we will investigate four different three dimensional extensions of the SIR
endemic model. The two dimensional SEI model was examined in Sect. 2.3. Now, we
include a recovered R class to make it three dimensional SEIR model (see Sect. 4.1, Sect.
4.2 & Sect. 4.3). We will discuss three different SEIR models. Firstly, we present the
general SEIR model then, we investigate two other SEIR models that have partial and
full recovery respectively. The model in Sect. 4.4 is another three dimensional model
which introduces a Carrier class (C'), and c¢(t), a proportion of the population which are

carriers.

4.1 SEIR model

This model is similar to that which we have discussed in Sect. 2.3 as a two dimensional
model. This becomes a three dimensional SEIR model when a recovered class is also
included. The SEIR model postulates long-lasting immunity after infection as there is
no transition from the recovered class to the susceptible class [11]. The system of four
differential equations describing this model is

D = s s, (44)
d

3% = fsi—Plei— (L+v)e,

i

3% = Plei+ve— (L+7)i,

@ = yi—pur

dt - / M )

with () = 1 - s(t) - i(t) - e(t) to keep equations (44) as a reduced three dimensional
system. The parameters u, v and v are as defined in Sect. 2.3. This model is three di-
mensional and if P = 0, it becomes the classical SEIR model [12]. The basic reproduction
number Ro = mﬁm is independent of P.

Studying the globally stability of the system (44) in the region
{(s(t),e(t),3(t)) : 0 < s(t),e(t),i(t) < 1,s+ e+ <1} is highly nontrivial Because, to
prove the global stability of such a high dimensional system is not usually possible.
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4.1.1 Steady State Solutions

Applying a qualitative approach, we find that the system (44) possess two steady states
i.e. infection-free and endemic equilibriums. The infection-free steady state is (s,¢e,7) =
(1,0,0). On the other hand, we have endemic steady state: when P = 0; and when P # 0.
For P = 0, the endemic steady state (s*,e*,7*) = (R%,’ ;‘g&;ig, MRB’”) .

For P # 0, the endemic steady states are

. ( Ly )
5 = - y
Ro(e + ) (p + v)ir + pv
and

v (e + 7)ot
PRo(u+7) (1 + v)ir + v

with 7* solves for

(1 = Ro)
Rolpe +7)? (1 +v)

f3) = PRyi** + pi* + =0, (45)

_ P v PRou
where p = ((u+'r)(#+v) pty oty

Ro > 1, as f(0) < 0. For Ry < 1, we solve f(z*) to find a quadratic solution for ¢*

. We have a unique positive solution 2* > 0 for

" = AN+ v) PPt PRy + (n+ )]+ 4P (Ro — 1)

2PRo(k +7) (1 +v)

For Ry < 1, we have three possibilities for the solutions of f(i*). If the discriminant of
f(7*) is positive, then we have two real roots and if it is negative, then we have no real
roots. If it is zero, then graphically, the parabola of f(z*) opens upward and is tangential
to the ¢*-axis. The value of Ry causing it to be tangential to the parabola on the i*-axis
is denoted as Rgyqdle-

4.1.2 Saddle Node Equation

In this section, we will look for the conditions of the critical point for P where backward
bifurcation occurs. We find the critical value for P, therefore we can calculate the saddle
node equation for Ry when P > P.j+ where backward bifurcation occurs. Treating Ro
as a function of 7* and differentiating equation (45) to get

PRow v (Pp 41
o oy Bty \ Wty

v = P Ro
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I 0.02

¥ 0.06

v 0.05
Perit 8.75
Readdle | 0977

Table 6: Parameter values for the SEIR model.

Setting (Ro,*) = (1,0) to obtain the critical value

v(u+v)
112

Perit = :
We calculate the saddle node solution by treating Ry as a function of 7* in equation (45),
for P > P.yit; and then at the saddle we have %&1 = 0, which defines the minimum value
of Ro. Substituting the value of 7* into equation (45) to get the saddle node equation

202 Pv v v Pr \?
7397z2+< - ——>27D72 +<—— > =0.
T \upty) prv o ow T\ wtv)

This equation solves for Ry, jq1e, @t Which two endemic steady states coincide with each

sk

other, at the turning point with ¢—component % = * = 7*.

4.1.3 Stability

Linearising the ODE system (44), the Jacobian matrix is

—p— Bi 0 —0s
J = Bi  —PBi—(u+v) Bs—PpBe : (46)
0 PBi+v PBe — (u+1)

For the infection-free equilibrium (s, e, ) = (1,0, 0), the Jacobian matrix becomes

—i 0 —p
Jinfection-free = 0 —(u+tv) g (47)
0 v —(1+7)

The essential sub-matrix is the second 2 x 2 diagonal block. The stability conditions for
7 and A read
T=—(2u+7+v),

A= (p+7)(p+v)(1-TRo)
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From this we always have 7 < 0 but if Ry < 1, then A > 0 and if Rg > 1 then, A < 0 for
all parameters. Hence, we have found that the infection-free steady state is stable when
Ro < 1, and unstable when Ry > 1.

For the endemic equilibrium, if P = 0, then (s*,e*,*) = (Rio, é‘éﬁfb;g, b (Rg—l)) ,

e 0 it
Jendemic = w(Ro—~1) —(p+v) Lﬂ_t”)f*_Jf’Y)
0 v —(p+7)

This leads to the characteristic equation w?® + a;w? + asw + a3 = 0, where
a1 =v+7y+ (2 +Rou,

ay = pRo(2u +v + 1),
ag = u(Ro — 1) + u(v +7) + 7).

From the Routh-Hurwitz theorem, if the conditions (c;) a3 > 0, (c2) az > 0 and (c3)
ai1az —ag > 0 are true, then all the roots of the characteristic equation have negative real
part which means stable equilibrium. First two conditions are true for Ry > 1 as a; and
az are both positive quantities. The third condition

¢y = p[Ro { (B + v + pRo)(v +7) + (3 + 2Ro) + ¥} + 1® + u(v +7) + v7]

is greater than zero, for all parameter values in Table 6, hence it is also true. Thus, we say
that a stable endemic steady state is present for %o > 1, by the Routh-Hurwitz criteria.

Now to find the stability of the endemic steady state when P # 0, we substitute the

value of s} and e’ into the Jacobian matrix (46) (in terms of 4}) to get

—n-py 0

0 PBii +v Sy

PB(pt)i G - A PB(u+)i}
FgEr — (Wt7), Sy = —PPiL — (p+v) and 5y = pfﬁl-; ~ Pany

Now we have the characteristic equation w3 + a;w? + asw + az = 0, where,

where, S, =

_ Gutyv+ (PR + v)? + Bt (2uP + BPi% +v)
! PBa% ’

48



4.1 SEIR model 4 3D EXTENSIONS

az = 815 — (Sy + 84)(u+ Biy) — 5’+(735i: +v),
B2 w(PRw + v)
p+ B
These results are found using Maple [5]; for Ro < 1 and P > Pt. We calculate that
the conditions (c1), (cz) and (c3) are true for the values of the parameters in Table 6.

az = (i + Bi})[S+S4 + S4 (PP +v)] +

Therefore, a stable endemic steady state exists for Rgyqgle < Ro < 1 and P > Pt

Now substituting s* and e*, in terms of ¢*, into the Jacobian matrix (46)

—p =B 0 #:Lg’?*_
J = Bi*. 5. S| (49)

0 PRt +v  S_

'plg + *_ o . pay P,B( + )f.
where, S_ =% —(p+7), S- =—Ppir — (p+v)and S_ =#fg@1 - Pfﬁ:ii :

We have the characteristic equation w? + a;w? + asw + az = 0, where:

(3u+ YV + (PR + v)? + Bi* (2uP + BPi* +v)
o= Ppix ’

ay = S_S_ — (S_ 4 S_)(u + Bit) — S_(PBi~ +v),

B w(PBit +v)
+ - .
W+ B

We find that conditions (c;) and (c3) are true while condition (c3) is false for the values of

as = (u+ Bi*)[S_S_ + S_(PBi* + v)]

parameters as given in Table 6. According to the Routh-Hurwitz criteria, if one of these
conditions is false, then we have an unstable steady state.

Hence, we say that we have unstable and stable endemic steady states that give a
backward bifurcation when Rsaddle <Ro <1 and P > Pgpjt- Conversely, for Ro > 1

and P < Pcrit a forward bifurcation occurs. These results are similar to those in Sect. 2.3.

4.1.4 Bifurcation Analysis

The bifurcation analysis is summarised in Fig. 26. Observe that, for any value of P, the
infection-free steady state is asymptotically stable for Ro < 1, while it is unstable, for
Ro > 1. However, the endemic steady states depend on Rg and P. If P > Py, then the
steady states leaves the bifurcation point at Rg = 1, in a backward direction in the region
Rsaddle < Ro < 1, with an unstable equilibrium therefore turns forward at Rg, qq]e 2nd
becomes stable as Rg > Rsaddle increases. For Ry > 1, the endemic steady state is
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(s, =(1,0)

08|

0.6}

04|

02|

0.92 0.94

Figure 26: Bifurcation Diagram for the SEIR model. Curves are s* and ¢* as the functions
of Ry. Continuous lines show stable steady state and broken lines are unstable steady
states. There are curves for P < P, P = Perit and P > P. For this model,

o vfuty)
PCI‘lt - T u

unique and stable for all P. This model also exhibits the phenomenon of hysteresis (see
Sect. 2.1).

4.1.5 Phase-Plane Analysis

In this section, we will analyse the phase-planes for the SEIR model, showing the tra-
jectories of the three dimensional system onto two dimensions. The valid region in three
dimensional space is a tetrahedron, for example s + e+ 17 < 1. We will look at a two
dimensional projection of phase-space where the trajectories are confined to the triangle
s+ 1 < 1. For a projection, trajectories of the solutions may appear to cross but they do

not intersect in three dimensional space.
1. P=0

e Ry < 1: A stable infection-free steady state is present in Fig. 27 (a).
e Ry > 1: There are one unstable infection-free steady state and a stable endemic

equilibrium exist in Fig. 27 (b).

P .
2. P=-

e Ry < 1: A stable infection-free steady state exists in Fig. 28 (a).
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Figure 27: Phase-Planes for the SEIR Model for P = 0: when (a) Ry =

Ro=12>1.
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Figure 28: Phase-Planes for the SEIR Model for P = 5 < Pt when: (a) Ro = 0.6 < 1;
(b) Ro=12>1.
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Figure 29: Phase-Planes for the SEIR Model for P = 8.75 = Pt when: (a) Ro

1; (b) Ro=12>
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Figure 30: Phase-Planes for the SEIR Model for P > P.pjt when:
Rsaddle; (b) Rsaddle =0.977 < 1.
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SEIR model
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Figure 31: Phase-Planes for the SEIR Model for P > P_.jt when: (a) Ro = 0.987 < 1;
(b) Ro=12>1.

Ro > 1: There are one stable endemic and unstable infection-free equilibriums

are present in this Fig. 28 (b).

3. P =Perit

e Ry < 1: A stable infection-free steady state exists in Fig. 29 (a).

e Ry > 1: There are an unstable infection-free and a stable endemic steady
states in Fig. 29 (b).

® Ro < Rgyddle: Only an infection-free equilibrium is present in Fig. 30 (a).

® Ro = Rggqdle = 0-977: A stable infection-free steady state exists. At this
point, we have stable and unstable endemic steady states coinciding with each
other in Fig. 30 (b).

® Readdle < Ro < 1: There are multiple endemic steady states: stable; and
unstable and a stable infection-free equilibrium in Fig. 31 (a).

e Ry > 1: A stable endemic steady state and an unstable infection-free steady

state are present in Fig. 31 (b).
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4.2 The SEIR model with Partial Recovery

A special case of the SEIR model with partial recovery is the model by Van den Driessche
et al. [14]. In this special case, the susceptible and recovered classes enter the exposed
class at rates Bsi and P[si respectively. The system of four differential equations for this
model is

d

— = n=Psi—us, (50)
de . . -

= = Bsi+ PPri— (u+ v)e + ki,

i ve — (u—+y)

dt - Iu' ’Y ¥

d

d—:; = —PpBri+ (1 — K)yi— ur,

with 7(t) = 1 - s(t) - i(t) - e(t) to keep equations (50) as a reduced three dimensional
system. A rational number x represents the unsuccessful recovery of the infectious class

which re-approach the exposed class.

We find the basic reproduction number by solving equations in System (50) and con-
sidering the standard SEIR model when P = 0. Obtain s* = ;1%; and e* = (—“i}l?i by
setting the right hand side of first three equations to zero, and substituting the values of

s* and e* to get

o pBrv At — (et )t v)
Bllu+ ) p+v)—ryw)

Substituting the value of i(t) into s(t) to get s* = —(—“W——-——Vi)—ﬂ Now we know that Rg
Bv

((tr)utv)—rey)

is the reciprocal of s*, then the basic reproduction number is Rg =

4.2.1 Steady State Solutions

By setting right hand side of system (50) to zero, we find the infection-free steady state
is (s,e,i) =(1, 0, 0). The endemic steady state (s*,e*,*) when P = 0, we have

X ok owy g (pt+)it p(Ro—1)
(i) = b B, EEEZ Y

If P #0, then the endemic steady state for ¢* solves

(51

F(*) = PRo(u+ v +v)i* + Mi* + (EDIETETT)

=0 (51)
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L 0.02

v 0.05

v 0.05

K 0.4

Perit 2.6
Readdle | 09545

Table 7: Parameter values for the SEIR model with partial recovery.

. _ _ PﬂU(M+V+T) . ‘% N . . %
where M = <1/(1 PRo) + ((u+1}{#+v}~nv~r)) . The function f(z*) is a quadratic in * and
has a unique positive solution when Rg > 1. For Ry < 1, we may have a bit more
complicated situation, depending on the values of the parameters (see Table 7). The

solution of the quadratic equation is

. ~-M£VE
=
+ 2PRo(t+v +7)’

where & = M? — 4P~ ?:i“ 7“;621))(1 ,f,;)) For Ry < 1, we may have three solutions. The
solutions may be real or complex depending on nature of the discriminant £. If £ = 0
then, graphically the parabola of f(:*) is tangential to the +— axis. This happens when
two endemic steady state coincides with each other whenever Ro = Rgyqqle- This is
a critical point at which the endemic steady states coincide. In next section, we will

calculate the critical conditions for Pcrit and Rsaddle'

4.2.2 Saddle Node Equation

Firstly, we find 7* at the critical point, using the equation (51) and forming the implicit

derivative 5‘%‘1 =0.

_ _ Pulp+v+y)
(UDRO 1) ((H+’Y)(#+V)+&V’Y))

2PRo(s+v+17)
We then calculate the critical value of P4 by setting (Ro,*) = (1,0) in 3* to get

=

(e 4+ ) (e + v) — Ky
(1l = K) '

Perit =
For P > P+, we get the saddle node equation by substituting ¢* into equation (51),

2752 2Pulp+ v+ )
P R°+<((u+7)(#+1/) =)

Pulp+v+7) :
(@+ﬁﬂ#+ﬂ—ﬁw)_0 =0

(2—?)—%0?%+(
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This equation solves for Ry, 4qje- In next section, we will consider the stability of the
infection-free and endemic steady states, using the critical values of P and Ry, qqje-

4.2.3 Stability

By linearising

—p—pi 0 —Bs
J = Bi(l—P) =PBi—(u+v) Bs+PB(Ll—s—e—2i)+kry |, (52)
0 v —(k+7)

for the infection-free equilibrium (s, e, i) = (1,0,0), becomes

—H 0 —p
J = 0 —{(u+v) B4+ry |- (53)
0 v — (1t +7)

We reduce this matrix to blocks, essential sub-matrix is the second 2 x 2 diagonal block.
The trace and determinant of this sub-matrix are

T=—(ptv)—(p+y),A=1—Re)ulp+v+7)+yw(l — &)

The trace is always negative while A < 0 when Rg > 1 and A > 0 when Rg < 1. For
Ro < 1, we have a asymptotically stable steady state. For Ry > 1, the infection-free
steady state is unstable.

Now, for the endemic steady state when P = 0, the Jacobian matrix (52) will become

—~uRg 0 _ ((#-f—')’)(#:b‘)—vnwy)
‘]endemjc = ,U,(RO - ].) “(‘u, 4 V) ((#-I—’T)(#;l—u%:cw) + Ry
0 v ~(u+7)

This leads to the characteristic equation w?® + a;w? + asw + a3 = 0 where
ay =2+ v+ v+ uRy,

az = uRo(2u +7 +v),
ag = p(Ro — 1)[u? + pv + py — kv,

All the roots of this characteristic equation shows a stable steady state if the conditions
(c1), (c2) and (c3) are true from the Routh-Hurwitz criteria. It is easy to see that for
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Ry > 1, the conditions (c;) and (cp) are both true and third condition (c3) is also true as
10y — ag = PRo[(3p + pRo) (v +7) +vy(1 + k) +v° + 9% + (31® + 2u*Ro)] + p(p® + pv +
py — Kkv7y) is greater than zero. Thus a stable endemic steady state exists for %o > 1.

If P # 0, then the Jacobian matrix (52) for the endemic steady states (s% = —&=, e} =

; utgiy 7
g’fij)-zi,zi) becomes
—p-pir 0 - ﬁé‘;#
Jendemic = gin(1-P) Sy S,
0 v —(p+7)
where 5. =—PBit - (p+v)and S+ =5£’i# +Ph Q h /3if+u B (#+Z)i1> — 2PBL + kY.

Now from the characteristic equation we find that w?® + a;w? + asw + az = 0, where
ay =3u+v+y+(1+ PG,

ay = =[84v + S (u+7) + (+ BiL) (S = (u+))],
BPuv(l —P)
G
Again we check if the conditions (¢;) a; > 0, (¢c2) ag > 0 and (c3) ajas > as, from the
Routh-Hurwitz criteria are true or false in order to find stability of the endemic steady

as = — (1 + Bi3)[S+ (1 + ) + Sy,

state. By using Maple [5], we find that these conditions are true for Rg, 4q1e < Ro < 1,
as a; and a3 are both positive and we calculate that in third condition (c3) ajas is greater
than agz for the parameter values given in Table 7. Thus, we have a stable endemic steady

state for Rgyqqle < Ro < 1 and for P > Pyt

The Jacobian matrix (52) for the endemic steady states when s* = E%F’ and e* =

(“—+;Li:~ in terms of 7* becomes
—p— 0 R
J = | pir(1-P) S & ,
0 v —(u+7)

where S_ =—Pgi* — (u+v) and S_ =24+ Pg (1 — “‘*’”i:) — 2PBE + K.

T 4 BT +u ¥
From the characteristic equation we have w3 + a;w? + asw + a3 = 0, where

a1 =3u+v+v+(1+P)si,
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SEIR with partial recovery
' (51)=(1,0

i#

0.8

0.6

0.4 crit
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. sr”’"/;;'—/

Roate= 0-9545

\ . . . . .
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Figure 32: Bifurcation Diagram for the SEIR model with partial recovery. Labels are as

in Figure 26. This model have Py it = (€ Hﬁgl(,'i(‘;r_"i)" LZaiy

az = —[S_v+S_(u+7) + (u+ BiL)(S- — (u+7))),

/B 2!‘“"’(1 — 73) S\ [ A &
a3 = —————= — (u+ 6i°)[S_(u+7v) + S_v|.
= ) — G B (ot ) + 50)
We use Maple [5] to calculate these conditions, for P > Pyt and Rg, qqle < Ro < 1,
the conditions (c;) and (cz2) are true but condition (c2) is untrue for parameters in Table 7,
thus this endemic steady state is unstable. When R > 1, and for all P, we estimate that
the endemic steady state is stable, as all the conditions are true for certain parameters in

Table 7.

In general, we understand that there are multiple endemic steady states for P > Ppit
and Rsaddle < Ro < 1; stable; and unstable. When Ry > 1, we have stable endemic
steady state for all P.

4.2.4 Bifurcation Analysis

Figure 32 illustrates that this phenomenon exhibits backward bifurcation, this is the same
as in Sect. 4.1.4.
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Figure 33: Phase-Plane for the SEIR Model with partial recovery for P = 0 when: (a)
Ro=0.7<1;(b) Rg=12>1.

4.2.5 Phase-Plane Analysis

We now study the phase-planes for the SEIR model with partial recovery class. In these
phase-planes we derive three dimensional information from two dimensional projections
(r(t) =1 —s(t) — e(t) —i(t)). The solutions in these phase-planes may appear to cross
each other only because of this projection. We use the numerical mathematical package
MATLAB ODE45 [10] to understand these phase-planes. A number of shades and tints
of grey colour are used for different solutions to represent different initial conditions.

1. P=0

e Ry < 1: A stable infection-free steady state exists in Fig. 33 (a).

e Ry > 1: There are an unstable infection-free steady state and a stable endemic

equilibriums in Fig. 33 (b).
2. P = %m

e Ry < 1: A stable infection-free steady state exists in Fig. 34 (a).

e Ro > 1: There are two stable endemic and an unstable infection-free equilib-
riums in Fig. 34 (b).

3. P = Perit

e Ry < 1: A stable infection-free steady state is present in Fig. 35 (a).
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4 3D EXTENSIONS

Fhass plang whan RoanPeP iz

Fhase planawfien R >1,F =P, /2

P
Figure 34: Phase-Plane for the SEIR Model with partial recovery for P = 1.3 = —%ﬂt

when: (a) Ro=0.7<1;(b) Ro=12>1.
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Figure 35: Phase-Plane for the SEIR Model with partial recovery for P = 2.6 = Pyt

when: (a) Ro=0.7<1; (b) Ro=1.2>1.
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Figure 36: Phase-Plane for the SEIR Model with partial recovery for P > Pt when:
(a) Ro=0.7< Rgaddles (b) Rsaddle = 0-9545 < 1.

a) b)

Fiezse plisse when R2n PP Ting plarsy twivn Rz B0 cn P af

Figure 37: Phase-Plane for the SEIR Model with partial recovery for P > P..;; when:
(a) Rgaddle < Ro=10.98 < 1; (b) Ro=12>1.
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e Ry > 1: There are an unstable infection-free and stable endemic steady states
in Fig. 35(b).

4 P=52> PCI‘it

® Ry < Rgyddle: Only an infection-free equilibrium is present in Fig. 36 (a).

* Ro = Rgaqdle = 0-9545: A stable infection-free steady state with stable and
unstable both endemic steady states coinciding each other in Fig. 36 (b).

Rsaddle < Ro < 1: There are stable and unstable endemic steady states and

a stable infection-free equilibrium in Fig. 37 (a).

Ro > 1: There is a stable endemic and unstable infection-free steady states in
Fig. 37 (b).

4.3 SEIR model with Full Recovery

This model is based on a paper by Van den Driessche [14]. The system of four differential
equations for this model is

ds

= = pu-—Bsi- 54
— i — Bsi— us, (54)
de _ .

78 Bsi + PpBri — (1 +v)e,

D = e (ut

dr . :

7 —PBri + i — pr.

with 7(t) = 1 - s(t) - i(t) - e(t) to keep equations (54) as a reduced three dimensional
system. In this special case, when entering the exposed class there is a successful recovery
of infectious class. The basic reproduction number Rg is the same as in Sect. 4.1. As we

have a successful recovery of infectious class thus x = 0.

4.3.1 Steady State Solutions

To find the steady state, we set the right hand side of equations (54) to zero. We calculate

the infection-free steady state (s, e,7) =(1, 0, 0) and the endemic steady state, when P = 0.

They are asin Sect. 4.2. If P # 0, then the endemic steady state for ¢* is the solution of
(1)

PRoi*? + Ni* + =0. 55
° (L+7)(w+v)(p+v+7) (55)
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I 0.02

07 0.05

v 0.05

Pcrit 1.96
Rsadd]e 0.9308

Table 8 Parameter values for the SEIR model with full recovery.

7 _ [ v{1=PRo} Puis . . . L. )
where N = ( ) + G +U)) . This equation has a unique positive solution for

Ro > 1. For Ry < 1, we have more complicated situation which depends on the parameter

values. The solution of this quadratic equation is

Y T2 #v2(1-Ro)
N+ \/A ap (et} (o) (pto+7)

2PR,

1=

For Ry < 1, we may have different solutions which may be real or complex. The nature
of these solutions is determined by the sign of the discriminant of equation (55). If the
discriminant is negative, then we have no real roots; if it is positive, then we get two
real roots; and if it is zero, then there is only one real root. In last case, the parabola is
concave up and is tangential to the i— axis.

In next section, we will calculate Rsaddle’ the minimum value of Ro; and Perit, the

critical value for P.

4.3.2 Saddle Node Equation

We find Pt from the equation (55) by differentiating Ro with respect to i* to get

(y(pnoq) . Puy )
o~ {(utv+7) () {ptv)
2PRy
Then we set %‘1 o) = 0, in order to define the critical value of P
Do (B +7)(+v)
crit v ‘

Thus, we can find the saddle node equation for Rg when P > P..j;. Hence, we put the

value of ¢* back in equation (55) to get the saddle node equation for Ry

2Pulp+v+y)
(1 +7)(p+v)

’P#(#+v+'¥)“1)2_0

PRe+ ( (n+7)(u+v) -

(2—’P)-—2’P)’RD+(
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This equation solves for Rgyqqle- We will consider the stability of the steady states in
next section using the critical values of P and Ry, 4dje-
4.3.3 Stability
By linearising a system of equations (54)
—p — Bi 0 —Bs

Bi(l—P) —PBi—(u+v) Bs+PB(1l—s—e—i)—PBi |, (56)
0 v —(1+7)

J

for the infection-free equilibrium (s,e,?) = (1,0,0), is the same as the Jacobian matrix
(47). The eigenvalues are same as for the matrix (47). For Ry < 1, we have an asymp-
totically stable infection-free steady state while for Ry > 1, it is unstable.

For an endemic steady state (s*,e*,i*) = (Rio,%(ﬁz;ig, “(Rg_l)), when P = 0, we

have the same Jacobian matrix (48). This leads to the same characteristic equation
w? + a1w? + asw + az = 0 of the matrix (48). Thus, a stable endemic steady state is
present for Ry > 1 when P = 0.

(n+7)i%
v )

Now, when P # 0, we put the endemic steady states for s3 = and e} =

+B* !
pt+0O
in terms of % y into the Jacobian matrix (56) to have

x 8
—p = P _9 “ﬁffﬁrp
Jo= | B(1-P) Sy S
0 v —(p+7)

where S =—Pp, — (n+v) and S, =B 1 pg (1 - (uﬂ)ii) — 2Ppi; . From

__nu
=Bt Bt v
the characteristic equation, we find that w?® + ajw? + asw + az = 0, where

ay = 3p+ v+ + (1 +P)FiL,

az = —[Syv+ Sp(n+7) + (u+B5)(Sy — (+7)),
BPuv(1 - P)
1+ Bii

We know that, from the Routh-Hurwitz criteria, all the roots of this characteristic equa-

az = — (u+ B[S (1 + ) + Sy,

tion are stable if the conditions (c1), (c2) and (cs) are true. We calculate that these
conditions are true for Rg > 1 as a; and a3z both are positive quantities and a;as — a3

is greater than zero using parameter values from the Table 8. Hence, we have a stable
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endemic steady state when Ry > 1, for all P.

Now, for P > Pyt and Rgyqqle < Ro < 1, we have calculated that these conditions
are true, using Maple [5]. Thus we have a stable endemic steady state for P > Pt
and Rgaqdle < Ko < 1. Now, we put the endemic steady states for s* = ’ﬁ, and

e = w, in terms of 7* into the Jacobian matrix (56), thus we have
—p—piz 0 — ﬁiﬁjﬁu
J = | gra-P) S S ;
0 v —(n+7)

where, §_ =—Pgi* — (u+v) and §_ =2+ Pg (1 B _ ‘”*”i*-) _2Pgi* . This

T Bittu T B tu v
leads to w® + a;w? + asw + a3 = 0, the characteristic equation, where,

ay=3u+v+y+ {1+ PG,

ay = —[S_v+8_(t+7) + (k+Bi)(S- = (u+7)],

2

o= P P) (st pit)B (o) + 801
When Ro > 1, and for all P, we have a stable endemic steady state, as conditions
(c1), (c2) and (c3) are true for the parameters given in Table 8. For P > P, and
Readdle < Ro < 1, we calculate and use the values in Table 8, that the condition (c3)
is false while rest of the conditions are true by using Maple [5]. This implies that an

unstable endemic steady state exists for 7 > Prit, Rgaddle < Ro < 1.

Overall, we conclude that there are two endemic steady states present for P > P,
and in the region of Rg,qqle < Ro < 1. These multiple endemic steady states give a
backward bifurcation.

4.3.4 Bifurcation Analysis

Figure 38 summarises that a backward bifurcation occurs at Ro = 1, this refers to
sub-critical endemic steady states (shown as dashed and solid black lines) and a sta-
ble infection-free equilibrium. Thus, the dynamics of this system are similar to those of
the SEIR class, described in Sect. 4.1.
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Figure 38: Bifurcation Diagram for the SEIR model with full recovery. The critical value
of Perit = (7)) (ptv)
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Figure 39: Phase-Planes for the SEIR Model with full recovery for P = 0 when: (a)
Ro=07<1; (b) Ro > 1.
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Flhiete plame wien Ryl Peaps Fiase plare when R >3, P o008
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Figure 40: Phase-Planes for the SEIR Model with full recovery for P = 0.98 = —%UL
when: (a) Ro=0.7<1;(b) Ro=2> 1.
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Figure 41: Phase-Plane for the SEIR Model with full recovery for P = 1.96 = P.,j; when:
(a) Ro=0.7<1; (b) Rop=2> 1.
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Figure 42: Phase-Plane for the SEIR Model with full recovery for P > P, when: (a)
Ro=0.7< Rsaddle; (b) Rsaddle = (0.9308 < 1. )
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Figure 43: Phase-Plane for the SEIR Model with full recovery for P > Pt when: (a)
Readdle < Ro=0.98 < 1; (b) Ro=2>1.
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4.3.5 Phase-Plane Analysis

In this section, we will show the trajectories of the three dimensional system onto two
dimensional in the following phase-planes for the SEIR model with full recovery. We use
the parameter values from Table 8 and different shades and tints of colour grey show

different initial conditions.
1. P=0

e Ry < 1: Only a stable infection-free steady state is present in Fig. 39 (a).
e Ry > 1: There are one unstable infection-free steady state and stable endemic

equilibrium exist in Fig. 39 (b).

P .
T — _crit
2. P=—4

e Ry < 1: An stable infection-free steady state exists in Fig. 40 (a).
e Ry > 1: There are two stable endemic and unstable infection-free equilibriums
in Fig. 40 (b).
3. P = Prit

e Ry < 1: A stable infection-free steady state exists in Fig. 41 (a).
e Ry > 1. There are an unstable infection-free and a stable endemic steady
states in Fig. 41 (b).

® Ro < Rgyddle: Only an infection-free equilibrium is present in Fig. 42 (a).

e Ro = Rgaddle = 0.9308: A stable infection-free steady state and we have
stable and unstable endemic steady states on top of each other in Fig. 42 (b).

® Readdle < Ro < 1: There are locally asymptotically stable and unstable
endemic steady states and a stable infection-free equilibrium in Fig. 43 (a).

Ro > 1: A stable endemic and an unstable infection-free steady states are
present in Fig. 43 (b).

4.4 The SIR Model with Carrier Class

There are some infectious diseases where a carrier may continue to infect others, but
not suffer the symptoms of the infection itself. This introduces the Carrier class C. A

proportion g(z) join the Carrier class on leaving the infective class when recovered. See,
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for example, the model for hepatitis B analysed in Medley et al. [9]. The mathematical
model consists of a system of four differential equations as follows

d

= = —O+ws+n, (57)
di .

% = As— (H’ + 7)7')

dc _

7 = i (et

dr )

il (1= q)vyi+ dc— pr.

As s(t) + i(t) + c(t) + 7(t) = 1, the model is three dimensional. Now, A = (i + Pc),
is the force of infection. For this model the constant P is the infectiousness of carriers
relative to acute infectives [9]. Recovery rates of the infectives and carriers are denoted
by v and ¢ respectively. A proportion ¢(x) of infectives that move to the carrier class is

a function of z = ﬁ In this model we will discuss examples for ¢'(z) > 0 where z is a

B

positive quantity. The basic reproduction number is Rg = et

4.4.1 Steady State Solutions

To study steady states, we solve the differential system (given in equation (57)) by setting

% = 0. Solving these equations we find the infection-free and the endemic steady states.

The infection-free steady state is (s,4,¢) = (1,0, 0). The endemic steady states for P = 0,
we have s* and i* same as in previous models and ¢* =2&)7#(Ro=1)

—W, WheI‘e .’E* = p‘ﬁ". FOI‘
P # 0, the endemic steady state is

(58)

1 * *\ox
(8*77;*7 C*> = < - ﬂ ’yq(z )Z > )

1+z¢" (u+v)(1+z) p+é

BGE*+Pc*)
TR

where z* =

4.4.2 Saddle Node Equation

We find the saddle node equation for Ro in terms of z* which will solve for R, qdle
(which is defined in previous models). We calculate this equation by comparing

T*
i (1+ 2k

1+3)

B =TRo(z*)(u+7) =
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Now, the steady state for ¢* = tm_—;(—ﬁ—z*) Thus, substituting the value of ¢* and rearrang-

ing the above equation, we get the saddle node equation for Ro(z*)

Rafa) — DL+ )

Cp+ 6+ Pyglzr) (59)

At (Ro,i*) = (1,0), a backward bifurcation occurs for P > Pyt = 45(—'[%% (the critical

value for P).

4.4.3 Stability

To find the stability of a fixed point we linearise the system (57). The Jacobian matrix is

given by
—u— B(i+ Pc) —Bs —Pps
J = B(i + Pc) Bs — (L +7) PBs . (60)
0 7+ q (@) —p— 6+ () B

The Jacobian matrix at the infection-free equilibrium (s,,¢) = (1,0, 0) is

—H —0 —-Pg
Jinfection-free = 0 B—(u+7) PB . (61)
0 0 —pn—=0

The eigenvalues are wi = —p, wy = (Ro — 1)(+7) and wz = —(p +6). If Rp < 1, then
all the eigenvalues are negative which shows that there is a stable infection-free steady
state while it is unstable for Ry > 1, as in this case, we find two negative and one positive

eigenvalues.

For P = 0, the Jacobian matrix evaluated at the endemic steady state (s*,i*,c*) =

(L (Ro—1)p q(w*)(Ro-l)#’r) is
Ro’ Ro(p+7)’ Ro(p+7)(p+6)

—HRo —(e+7) 0
Jendemic = #(Ro — 1) 0 0 : (62)
0 9z + ¢ (@) (Ro— 1) —(u+9)

We reduce this matrix to blocks to get the essential sub-matrix which is 2 x 2 diagonal

block
,LL(RO - 1) 0
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7 0.02
y 0.06
4] 0.025

Perit for Example 1| 0.8333
Rsaddle for Example 1 | 0.8299
Peyit for Example 2 0.9
Readdie for Example 2 | 1.09

Table 9: Parameter values for the SIR model with carrier class.

This matrix has 7 = —(u +7)[u(Ro— 1) — (u+ )] and A = (u+7)(u+6)(Ro— 1). We
have negative trace and positive determinant when Ry > 1, this tells us that if Rg > 1,
then we have a stable endemic steady state whenever P = 0.

When P # 0, the Jacobian matrix (60) evaluated at the endemic steady state (equation

(58)) in terms of z*

* i PR
—p(1 +a%) e - 1}(?';)
+ z
Jendemic = pz* S, N T (63)
0 g(a*)y + Lo S
where S = ~(u+6) + q’(z*l)-'{y-#, S = (“”)(ﬁ;fl”*)). Again we find a characteristic

equation Wi+ a1w? + agw + a3 = 0, where

3+ 4pz* + (v + 8)(1 +2*) — ¢'(*)yPRox* — Ro(y + p) + pa*?

"o = (64)
1+ z*

0 = [(q(z*)yP — pa*)(1+ Z:I):xz’)(gz*)wnox*] Ro(p +17) Bt S) (1) — S8

a = plpt7) <(u #8)(1+47) — (") PRoz — 2T 61 ;iﬁﬁhp%) |

In the next few sections we will discuss different behaviours by numerically choosing two
different examples for the function g(z*). We will check the conditions (c1), (c2) and (c3)

from the Routh-Hurwitz criteria in order to find the stability for different functions q(z*).

4.4.4 Examples 1, 2

Here we use Maple [5] to evaluate steady states solutions, saddle node equations and
stability. Example 1 when ¢’(0) > 0; and Example 2 when ¢'(0) = 0, both give backward

72



4.4 The SIR Model with Carrier Class 4 3D EXTENSIONS

bifurcations but each leads to a different result. Example 1 is related to the function
q(z*) = 1 —e%%" for which ¢’(0) > 0 and Example 2 is for the function ¢(z) = % for
which ¢’(0) = 0.

The main difference in these functions, is that Example 1 has similar dynamics at
(Ro,1 — s*) = (1,0) to the extended models in Chapter 2, while Example 2 gives two
backward bifurcations between Ry, 341 < Ro < 1.19.

Example 1

In this section, we will look forward to analyse the steady states and the stability of
the endemic steady state when P # 0. We will evaluate the Jacobian matrix (63) with
q(z*) = 1 —e7%9" and then we will move on to the bifurcation and phase-plane analyses.
We will use time- series plots to analyse the qualitative behaviour of the solutions of the

system (57) against time, applying different initial conditions.

Steady State Solutions

The infection-free steady state remains the same as that in Sect. 4.4.1 and for the endemic

steady states: for P = 0; and P # 0 we set q(z*) = 1 —e~%%", Thus in the Example 1, we
D : - _ (L Ro-Dp (1-e=®=")Rg—1)uy
have for: P = 0, the endemic steady state (s*,7*,c*) = <R0, Roletn) — RoGr ) (-] ),

S W (R W P ¢ C ) 7
L I+z*? (p+v)(1+z*)? uté

and; for 7 # 0, an endemic steady state (s

exists.

Saddle Node Equation

In Sect. 4.4.2 we set q(z*) = 1 — 99" in equation (59), to get the saddle node equation

Rolz") = (k+06)(1+2%)
f+ 6+ Pry(1 — e 0%y

and the critical value of P is
p.. = kFo
crit 0.9y :

Thus, we say that the backward bifurcation at (Ro,*) = (1,0) occurs when P > Pt
and Rqyqdle < Ro < 1.
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Stability

In this section, we will refer to the Jacobian matrix (63) in Sect. 4.4.3 to study the stability
of the endemic steady states (s*4*,c*) for P # 0. Equation (64) for g(z*) = 1 — e=0-9¢"

becomes

_ Bu+dpst + (v +8)(1+ %) — 0.92%e 09 yPRoz* — Ro(y + p) + pz*’
B 14z

a1 )

[((1— %9 )yPRo — pa*Ro)(1 + 2*) + 0.92%e ™09 yPRIz*] (11 + 7)
(14 2%)?
+u(S+ S)(1 + %) — S8,

Ro(p+6) — (1 — e %" )vPR,
1+ z* ’

Qs =

az = p(e+7) <(u +6)(1+ z*) — 0.9yPRz*e™0%" —

- (1—e=0%2" yPRoz* & _ (u47)(Ro=(1+*)
where § = —(p + 0) 4 =0, § = M0 E
values of z*, approximately between 0.025 to 20, for the parameter values given in Table
9. So we find that (c;), (cz) and (c3) are true for Rg > 1 whenever P > Pt for all
values of z*. Thus, there is a stable endemic steady state for Rq > 1.

) For this we choose different

When Rgyqdle < Ro < 1 and P > P, we have conditions (c1), (cs3) are true but
(co) is false as a3 < 0 for the values of z* between 0.025 to 0.8; while for other values, all
conditions (c1), (cz) and (c3) are true. Therefore, we have multiple endemic steady states
in this region Rgy qqle < Ko < 1, that are stable and unstable, using the values in Table 9.
Multiple endemic steady states leads to the phenomenon of backward bifurcation, which

occurs at Ro = 1.

Bifurcation Analysis

Fig. 44 shows a bifurcation diagram of Example 1, for certain parameter values. We plot
three bifurcation curves against Ry using infection-free and endemic steady states. We
show that a forward bifurcation occurs for Rg > 1 if P < P, this shows the presence

of endemic infection for Ry > 1.

For Rggddle < Ro < 1 and P > Pt = _:‘q,—Jr(g)? there are two sub-critical endemic
steady states present, one stable and the other unstable. From Ry = 1, an unstable
endemic steady state moves backward until it reaches Ry qq]e, @t which point, it becomes
stable and moves forward. Thus a backward bifurcation occurs for at Rg = 1.
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Figure 44: Bifurcation diagram for the SIR model with carrier class (Example 1) for the
function g(z*) = 1 — 729", We show 1 - s* as a function of Ro. Backward bifurcation

occurs when P > Pepit = % at (Ro,1 —s*) = (1, 0).

Phase-Plane Analysis

We now analyse the phase-planes for the carrier class Example 1 in a (s*,¢*) plane. The
dynamics of these phase-planes, using ODE45 (a numerical integration in MATLAB [10])
with different initial conditions (shown by different colours) is consistent with other models
as in Chapters 2 and 4 (which are plotted using PPLANESG application in MATLAB [10]
as they are in three dimensions and also have a special function ¢(z) that varies as

varies).
1. P=0

e Ry < 1: A stable infection-free steady state is present in Fig. 45 (a).

e Ry > 1: There are an unstable infection-free steady state and a stable endemic
steady state in Fig. 45 (b).

2. P="Pqit

e Ry < 1: Only a stable infection-free steady state is present in Fig. 46 (a).

e Ry > 1: In Fig. 46 (b), there are unstable infection-free and stable endemic

steady states.
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Figure 45: Phase-Plane for the Example I for P = 0 < Py when: (a) Ro = 0.7; (b)

Ro=1.1.

3. P> Pcrit

e Rg < 1: We find only a stable infection-free equilibrium in Fig. 47 (a).

® Ro = Rgaqdle = 0-8299: A stable infection-free steady state exists and en-

demic steady states coincide with each other as shown in Fig. 47 (b). We see

that all the solutions goes to stable infection-free steady state.

® Readdle < Ro =095 < 1: In Fig. 48, there are stable and unstable endemic

steady states and an unstable infection-free equilibrium.

e Ro > 1. There is a stable endemic and unstable infection-free steady states

are present in Fig. 48.

Time-series plot

In this section, we present a brief time-series analysis for the solutions of the ordinary dif-

ferential equations (57). The proportions of susceptibles (s(t)), infectives (i(t)), removed

(7(t)) and carrier (c(t)) classes, in a constant population, move as time (in years) changes

and for different values of P and Rq. We use the initial conditions of (s*,i*,c* %) =
(0.5,0.3,0.2,0.0) in these plots. We also look for the transient part, which depends on
the initial condition, and the general part, which gives the steady state. The general part

is usually consistent in all time-series plots.

1. P=0
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Figure 46: Phase-Plane for the Example 1 for P = 0.8333 = P.jt when: (a) Ro = 0.7;

(b) Ro = 1.1.
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Figure 47: Phase-Plane for the Example 1 for P = 1.6 > Py when: (a) Ro = 0.7 < 1,
(b) Ro = Rgaddle = 0.8299 < 1.

7




4.4 The SIR Model with Carrier Class

4 3D EXTENSIONS

a)

Fane plane wiien B o < ® - 0gg <1 F - a5560

Fhase plane witen K = 11 > 1, P~ 4046

I

B 2 L il : bt
a2 od 05 ae o? 08 0y 1
5

Figure 48: Phase-Plane for the Example Ifor P = 1.6 > P_.it when: (a) Rgpqqle <

Ro=0.95<1; (b) Ro=1.1 > 1.
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Figure 49: Time-series plots for the carrier class Example 1. For P = 0 < Pguit: ()
Ro=10.7<1;(b) Rg=11>1and For P = 0.8333 = Pgt: (c) Ro = 0.7 < 1; (d)

Ro=1.1>1.
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Figure 50: Time-series for ¢(z) = 1 — e7%9 the carrier class Example 1. For P = 1.6 >
PCI‘it: (a) Ro=0.6<1; (b) Rsaddle =R = 0.8299 <« 1; (C) Rsaddle <Ro=095<1;

e Ry < 1: In Fig. 49 (a), a stable infection-free steady state is present as i(t)
decreases to zero and the proportion s(t) increases and give steady state.

e Ry > 1: An unstable infection-free steady state and a stable endemic equilib-
rium exist as i(t) decreases and give steady state. The proportion s(t) decreases
and increases rapidly and decreases slowly, then give steady state in Fig. 49

(b).
2. P =Perit
e Ry = 0.5 < 1: Fig. 49 (c) shows that the proportions i(t), r(t) and c(t)

decreases to zero and s(t) increases to 1 which gives a stable infection-free

steady state.

e Ry > 1: In Fig. 49 (d), we observe that the proportions go to steady states.
Thus, there are two steady states: an unstable infection-free; and a stable

endemic.
3. P> Pcrit

e Ry < 1: The proportion i(t) decreases to zero. Thus only an infection-free

equilibrium is present in Fig. 50 (a).
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® Ro=Rgaddle = 0-8299: In Fig. 50 (b), the proportions give steady states for
a longer period of time. Only a stable infection-free steady state exists. At this
point, we find stable and unstable endemic steady states intersect with each
other.

® Readdle < Ro < 1: In Fig. 50 (c), we find all proportions giving steady states
in shorter period of time. Thus, there are locally asymptotically stable endemic

steady state and a unstable infection-free equilibrium.

e Rg > 1: There is a stable endemic and unstable infection-free steady states
are present as i(t) increases slowly and decreases quickly. On the other hand,
s(t) decreases fast and then increases until steady state occurs in Fig. 50 (d).

Example 2

In this section, first we will study the steady states, stability of the endemic steady state
when P # 0 for ¢/(0) = 0, a Example 2. Later, we will analyse bifurcation, phase-planes

and time-series plots.

Steady States Solution

The infection-free steady state remains unchanged, see Sect. 4.4.1. For the endemic

steady state, we set q(z*) = ";T_z for all P. Thus in the Example 2, we have for: P = 0,

I*
: wowy (1 (Ro=Du  z2(Re-1) .
the endemic steady state (s*,:*,¢*) = (70, ROC(’#H), (z*zﬂmoc(’uﬂ‘;zwé)), and; for P £ 0,

c*) _ 1 z*u 113*2’77:*
d I+z*? (p+y)(14z*)? (z*2+2)pt+d )

an endemic steady state (s*,i*

Saddle Node Equation

*2

The saddle node equation (59) for ¢(z*) = & is

(+8)(1+ z*)(z*? +2)
(2*2 +2)(n+ 6) + 7Pz

Ro (CE*) =

This equation solves for Ry, q]e, but in this example we find two solutions for Ry, 441e >
1. The critical value for P is calculated numerically from ¢'(0) = 0. Thus, using MAT-
LAB [10], we have Pt = 0.9.

Stability

We review the Jacobian matrix (63) to study the stability of endemic steady states
(s*,3%,¢*) for P # 0 using Maple [5]. At this point we substitute g(z*) = -2~

2
~zps D
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equations (64) to get

4yPRoz*? + Ro(u + ) (z*? + 2)2>

s = b0+ 5+ 8) 4 (ot ) - (LR RO )G

= TRk +7) (@ +2)(1 + &) (4P — pz*) + 4YPRy)
i (1+2%)(z* +2)?
p(ie+ ) (e + 6)(@* +2)2((1 + 2¥)? — Ro) — YPRoz*%(5 + 4a*)]
(1 +2z%)(z* +2)

where S = ~(u + 6) + ‘(%3%%%7, S = (“”)(E;fl”*)). We have observed that for all

P there is a stable endemic steady state for Ro > 1. When R, qq1e < Ro < 1.19 and
P > Perit, we have a untrue condition (cg) as az < 0 for some values of * approximately

+ 1S+ 8)(1+2*) — S8,

as = )

between 0.5 to 1.2; while for the other values of z*, all conditions are true.

To calculate these results we use Maple [5] with the parameter values given in Table
9. Thus, we find that there are multiple endemic steady states depending on the different
values of z* in this region. For Ro > 1, we have stable endemic steady state if P > Pit,
we have sub-critical endemic steady states for Rgyqqle < Ro < 1.19. This means the
Example 2 exhibits different dynamics as there are two backward bifurcations.

This example is discussed in detail in Medley et al. [9] and have a different function
q()\) with a constant f, 0 < f < 1, in terms of A, which has unit time™. However, this

$*2

function exhibits similar dynamics to our chosen function g(z*) = A

Bifurcation Analysis

In Fig. 51 the bifurcation diagram for example ¢’(0) = 0 is presented. When P < Pt
and Ro > 1, we find a forward bifurcation. At P, there is an inflection in the bi-
furcation curve, and this separates two qualitatively different behaviours. If P > P_,it,
then we have multiple endemic steady states for some value of Rg. At Ro > 1 the curve
leaves the trivial solution in a forward direction, then at Ry = 1.19, the curve moves
backward and the steady state becomes unstable. Until R, q41e = 1.09, the curve moves
in a forward direction again, and the endemic steady state becomes stable.

Clearly, as ¢'(0) = 0, there can be no backward bifurcation at Rg = 1, thus Ry = 1 is
not a bifurcation point, in this example. We observe that, instead at Ry = 1.19, there is
a backward bifurcation for 77 > P, where P..; is found numerically. Several multiple

endemic steady states are present for Ry, qqle < Ro < 1.19. Thus in this model an
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Figure 51: Bifurcation Diagram for the carrier class for the function g(z*) = x—f:_—z In this

diagram, 1 - s* is plotted against Ro. Backward bifurcation occurs when P > Pt = 0.9
for ¢'(0) = 0. Multiple endemic steady states exist in the region of R, 4q1e < Ro < 1.19.

endemic infection persists for %o > 1, as well as for Ry < 1. This example of the carrier

class model is different from previous model as it exhibits two backward bifurcations.

Phase-Plane Analysis

At this point we analyse the phase-planes for the Example 2. We categorise this analyse
in three behaviours with respect to; P < Peyit; P = Perit and; P > Pyt for Ro < 1
and Ry > 1. The projection of three dimensional (s*,7*, c*)-plane onto two dimensional

(s*,7*)-plane may show the intersection of possible trajectories.
1. P=0

e Ry < 1: A stable infection-free steady state is present in Fig. 52 (a).

e Ry > 1: An unstable infection-free steady state and stable endemic equilibrium
exist in Fig. 52 (b).

2. P = Perit

e Ry < 1: A stable endemic and an unstable infection-free steady states in Fig.
53 (a).
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Figure 52: Phase-Planes for the Example 2 for P = 0 < P, when: (a) Ro = 0.7 < 1.19;
(b) Ro = 1.2 > 1.19.

e Ry > 1. There are an unstable infection-free and a stable endemic steady
states in Fig. 53(b).

3. P> Pcrit

Ro < Rgaddle: Only an infection-free equilibrium exists in Fig. 54 (a).

Ro = Rgaqdle = 1:09: A stable infection-free steady state exists. There are
endemic steady states which seems to be on top of each other in Fig. 54 (b).

Readdle < Ro < 1.19: An unstable and a stable endemic steady states and a
unstable infection-free equilibrium exist in Fig. 55 (a).

Ro > 1:There is a stable endemic and unstable infection-free steady states are

present in Fig. 55(b).

Time-Series Plots

In this section, we will study a brief time series analysis for the solutions of the ordinary

The proportions of susceptibles (s(t)),

2
infectives (i(t)), recovered (r(¢)) and carriers (c(t)), in a constant population changes as

differential equations (57), where g(z) =

time increases. This behaviour is similar to the behaviour shown in the time-series plot
for g(z) = 1 — e7%%9. We apply the initial conditions (s*,4*, c*,r*) = (0.5,0.2,0.2,0.1) to
all plots.
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Figure 53: Phase-Planes for the Example 2 for P = 0.9 = P4t when: (a) Ro = 0.7 <
1.19; (b) Rg = 1.2 > 1.19.
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Figure 54: Phase-Planes for the Example 2 for P = 1.8 > Pt when: (a) Ro = 0.7 <
1.19; (b) Rsaddle = Ro = 1.09 < 1.19.
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Figure 55:
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Phase-Planes for the Example 2 for P = 1.8 > Pt when: (a)Rgyqqle <

Ro =1.17 < 1.19; (b) Ro = 1.2 > 1.19.

1. P=

3. P>

0
Ro < 1: In Fig. 56 (a), the proportion i(¢) decreases till zero. Thus there is
stable infection-free steady state.

Ro > 1: There are an unstable infection-free steady state and stable endemic
equilibrium exist as the proportions i(¢) and s(¢) decreases and increases re-
spectively (see Fig. 56 (b)).

Perit
Ro < 1: Fig. 56 (c) gives a stable infection-free steady state.

Ro > 1: In Fig. 56 (d), there are two steady states: an unstable infection-
free; and a stable endemic. The proportions i(t) goes to steady state after
decreasing. The proportion s(t) decreases first and then increases and then goes
to steady state.

Perit
Ro < 1: Only an infection-free equilibrium is present in Figure 57 (a). The
proportion i(t) decreases to zero.

Ro = Rgaddle = 1.09: A stable infection-free steady state exists. The pro-
portion 7(t) increases and decreases until steady state occurs. Conversely, s(t)
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Figure 56: Time-series plots for the carrier class Example 2. For P = 0 < P, (a)
Ro =07 < 1; (b) Ro =12 > 1and For P = 0.9 = Pt (¢) Ro = 0.7 < 1; (d)
Ro=12>1.

P=1.8> Pu

1 .
b I
art =
F
H r
Yot
235
3
foc
3ai !
3
azy
a1l . i o )
- . i L T
o i : S S )
] wo hE TR E T me aw s ew 50 F ae oW R W OEET TR R e im
ey Lrpnn
LT .
!
T C:l et d)
Ba- Sar.
. i
¥
]
o -
| e
i ) o L
L [ !
i c i
! T Bl e cima et s i
2 ) za B +d 535 =) X ] ) i 234 w0 TEST i i )
pan nyrin

Figure 57: Time-series plots for the carrier class Example 2 for P = 1.8 > Pt (a)
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decreases and then increases before going to the steady state. This show the

presence of two endemic steady states coincides (see in Fig. 57 (b))

® Readdle < Ro < 1.19: In Fig. 57 (c), there are an unstable and a stable

endemic steady states and an unstable infection-free equilibrium.

e Ry > 1: There are a stable endemic and an unstable infection-free steady
states as the proportions i(¢) and s(t) goes to steady states (see Fig. 57 (d)).

4.5 Summary

Even for three dimensional extensions of the SIR model: the SEIR model in Sect. 4.1;
the SEIR model with partial recovery in Sect. 4.2; the SEIR model with full recovery
in Sect. 4.3; and a carrier class Example 1 in Sect. 4.4.4, we conclude that an endemic
infection persists for some values of Rg < 1 when P > P¢. The infection-free steady
state is locally asymptotically stable for Ry < 1 and unstable for Rg > 1 as before.

The carrier class Example 2, for ¢'(0) = 0 in Sect. 4.4.4, we have different dynamics
compared to the other models we study so far. A forward and two backward bifurcations
show the persistence of an endemic infection for both Rg > 1 and Ro < 1 when P > Pt
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5 General Analysis of 3D Models

This section focuses on the three dimensional extensions of the SIR endemic models: the
exogenous infection model which has already been discussed as a two dimensional model
in Sect. 2.3; and a model with a carrier class. We study these models in a general manner
under a matrix framework. This method was applied to the two dimensional models in

Sect. 3.
We consider the ordinary differential equation

dy B
- My + f(y), (65)

where M is a non-singular 3x3 matrix, y is a vector and f(y) is a vector-valued function.

We calculate M and f(y) to find the direction of the bifurcation using a bifurcation
1

parameter R at a steady state y = | 0 |. We use ¢* as a perturbation variable, and

0
apply Taylor series and Binomial expansions to obtain our results.

5.1 The SEIR model

Consider the SEIR model reported in [12] and described in §4.1. We consider equation

(44), omitting %, taking 8 = Ry (u+z/)l£,u+’y), and rescaling time so that p = 1,

equation (44) becomes

ds )

E = 1-— RoDSZ - S,

de ) . 5
e = RoDsi — PRoDei — Ce,
di C

— = PR  + —e — As.

7 PRyDei + De Ai

See Table 5 for the notations of D, C, D and \A.
s

Now we write this equation with the form of system (65), by settingy = | e
1

1 0 0 1 — RoDsi
HoeeM=| 0 C 0 | f(y)=| RoDsi— PRyDei
0 —% A PRyDei
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s
At steady state y* = | e* | is solved to be
2:*
1 0 0 1 —RoDs*i*
y'=M1f(y) =0 C' 0 RoDs*i* — PRoDe**
0 D1 A1 PRoDe**
Hence,
s* 1 — DRos™i*
y' o= e | = DCY(Ros*i* — PRoe*i¥) . (66)
A Ro(s*i* — Pe*i*) + DA PRye*i*

We apply a Taylor expansion to get

RO = 1+ ﬁ*Rm + 3'*27202 + O(?:*:i)} (67)
s* = 14iast+2s5+ O,
e = d*el +14i*%eh + O®).
Thus
Ros*i* = 7;* + 7;*2(8; -+ ROI) + O(’é*:i)a (68)

Roe'i* = el + O(1*),
RO?:*Q — ,1;*2 + O(Z*3>

Ignoring higher order terms and substituting equation (68) back into equation (66), we

have
1+ "s7 +4*2s% 1 — Di* — D(s} + Ro1)e*?
vy o= i*el + 12} = DC13* + DCL(st + Roy — e])i2 . (69)
i* i* + (5% + Ry — Pet + DA IPet)i*?

Comparing terms in the same power of ¢*

1 8] 55
0 |+ | & | +i?| &
0 1 0
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1 -D —D(ST + Rm)
0 |+ | DCt |+ DC st + Ror — eF) ,
0 1 (S;_r + Ra1 — 'PE;{ + DA_L‘)DBT)
We get
s1=-D <0,
e} =DC !,
S; = —7)(871k + R()l),
e5 = DC~ (s} + Roy — €7),
st +Rop — Pel + DA Pe} = 0.
To get the critical value for P, we substitute into the last equation Rg; = 0, s = =D
and ef = DC~!. Thus,
CA
P=p—a

Now, substituting from Table 5 for C, D and A, we get

(p4+v)(u+7)
P = s
(pv){pty)—r{pty)
"y

Thus,

v(p +v)
viptv)|

Perit = 7

o If P > P.yit, then Ry < 0 and a backward bifurcation occurs.

o If P < Prit, then Ro; > 0 and a forward bifurcation occurs.

These results are consistent with Sect. 4.1.

5.2 SEIR model with Partial Recovery

This model is based on the paper of [14]. The system of four differential equations for this
((p+v)(p+7) — syw)
v

model have already been mentioned in Sect. 4.2. Taking § = R,
and rescaling time so that u = 1, equation (50) becomes
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Three Dimensional Exogenous Infection Model
(SEIR model)

% o o A o
§ =1+is1+i%s, Ro=1+1iRp+ i2Rpe

Figure 58: An enlarged top-center portion of Fig. 26. In this sketch, it is clearly shown
that s7 < 0, and Ry < 0 give backward bifurcation, while Rg; > 0 give forward bifurca-
tion.

- = 1 —RoLsi— s,

% = RoEsi — PRoE(s+e+1i)i—Ce+ PRoDi+ B(1 — PRo)i,
di C :

i - Bt At,

where B = %Z, E = D — B. (see Table 5). We rewrite this equation in a ODE system
s
(65) by settingy = | e

7

Here
10 0 1 — RoEsi
M=|0 C =PRD-B(1-PRo) |, fly)=| RoEsi—PRoE(s+e+i)i
0 -& A 0
st
At the steady state, y* = | e* | solves

'E..*

Yy =M7f(y)
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1 0 0 1 — RoLs*i*

D D(PRoE1B) 7 ok ik ( o% * %\ 5k
C(D-B)(1—PRo) AC(D—(’POROE+B)) RoEs*i* — PRoE(s* + e* + i*)i

1 D

0 (D—B)(1-PRo)  A(D—(PRoE+B)) 0

Hence,
s* 1 — ERgs*i*
y* = e | = —'_-(D}-E;—E]C 1 —PRo)Ros*i*(1 = P) — PRo(e* +14*)i*] | . (70)

i* m5;(1 — PRo) ™" [Ros*i*(1 = P) — PRo(e* +i*)i*]

At this point, a Taylor expansion is applied as in Sect. 5.1, from equation (67). Thus,
substituting equation (68) back into equation (70), and ignoring higher order terms, we

get
1- E(i* +9*2(s1 + Ro1))
E " . -1
y* o= (DEZ)C [z + z*2<31 + Ro1 — (61 + 1))} (1 i K,r;m i 2112202)
« . -1
ooy [+ 25T+ Ror — 55 (€5 + 1)) (1 _ PRy 2173202)

Taking (1 — P)~! out as a factor in row 2, and then we applying the binomial expansion

to the inverse exponent. Then we have

1 — B +i*2(s] + Ra1))
vy = ,D B)C [i* + &% (s} + Ron — _L,P(el -+ 1))] 1—2" |,
(D“B} [z + 25t + R — o (e; +1))] (1 - z)7

where
Y= i*PRo n *?PRoq
1-P 1-P )
Expanding
B R2 x2 "
(1—2)t=14+2+22+0(") =1+ "?301,3 PR% + 7()1 071;)2 +O(*%).

We ignore cubic and higher order terms and rewrite equation (70) to get

14 2% 81+3*2 3 1-—- Eﬁ* “E(SY—FRgl).*g
y' = i*ey + i*%el = (Dﬁg)c [* +02(s) + Roy — 125 (€] + 1 = Ron)]
o (DE‘;B} [Z + '3*2(31 + ROl — m(el -+ 1-— ROI))]
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Hence comparing equal powers of the perturbation variable ¢* to find the critical value
for P.

1 81 85
0 |+ e |+ e
¢ 1 0
1 TE—‘ _ —E-‘(Sic + ROl)
ED LD — -
0 |+ | wope || @p. el TR T et Rl
! (p_§ B) (D?B) 1+ Rox = 55 (ef 1= Rou)]
We have
=-F<0,
o ED
' (D-B)
E 1
D-B 7
s3 = —E(s1 + Ro1),
,___ED .
eg:(D—B)C_ [81+R01 1 7)(€1+1—R01):|7
E . P
D-B {51 TR - Tpla@ - RM)} =
At the critical value for P, set Roy = 0, s = —F and ef = £. Thus we solve

st 4+ Rop — Tf_P(e’i +1—Rp) =0 toget Perit
EC
Pait =2—p_¢

Substituting from Table 5, the values for C, D and E, we get

Perit = ot 735,(1 - 2;)“ o

o If P > Pt then Ro; < 0 and a backward bifurcation occurs.

o If P <P, then Ro; > 0 and a forward bifurcation occurs.

Cr1

These results are consistent with Sect. 4.2.

93



5.8 SEIR model with Full Recovery 5 GENERAL ANALYSIS OF 3D MODELS

SEIR model with partial recovery

A

PR Roz>0

Figure 59: Enlarged top-center portion of Bifurcation diagram 32. The critical value

p . = wEuty) = kp
crit l/’)’(l — i{/) b

5.3 SEIR model with Full Recovery

This model is based on the paper of [14]. The system of four differential equations for this
model are already mentioned in Sect. 4.3. The basic reproduction number R, is same as

in Sect. 4.1. Thus rescaling time so that © = 1, equation (54) becomes

ds

pri 1 —"RoDst — s,

de . N &
o= RoDsi — PRyD(1 — s —e—1i)i —Ce,
di C :

E = 5‘6 - AZ.

See Table 5 for notations. We write this equation in a matrix framework system (65) by

s
settingy = | e
1

10 0 1 — RoDsi

Here M= | 0 C  —PRoD |, f(y)= | RoDsi — PReD(s+ e+1)i
C
0 —% A 0
S*

At the steady state y* = | e* |, we have
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Yy =M"f(y")

1 0 0 1 — RoDs*i*

0 1 PRoD R Ds*i* — PRoD(s* + & + i)i*
CI—PRy) AC(I-PRy) 0Ds™ oD(s* +e* +1i*)i

1
0 Brpry  AT-PRY) 0
Hence,
s* 1 — DRps*i*
vy o= e | = | DCY1—PRo)Ros*i*(1 — P) — PRo(e* +1i*)i*] | . (71)

i (1 —PRy)"[Ros*1*(1 — P) — PRo(e* + i*)i*]

In equation (67), we apply a Taylor expansion using the perturbation variable *. Substi-
tuting equation (68) back into equation (71), we get
1- D(i* + ’L.*2(S’{ + Rm))
— - . -1
y* = | DET[* + (st + Ron — Bolet +1))] (1 - B - SPa

[ + 1*2(s7 + Ror — 25 (e} +1))] (1 — EPRe “i”i@i"z)

Again, as in Sect. 5.2, we apply a binomial expansion

_ [(?#*PRo | *PRog
T\T=P TTi-P )¢

substituting z into y* to have

1 — D(’L* + '1;*2(81< + ROl))
y* = DC! [i* + (s} 4+ Ro1 — 2s{ef + )] (1-2)7t
[i* +#%(s} + Ro1 — 12slef +1))] (1 —2)7

Expanding (1 —2)"! = 1+ 2+ 22 + O(2?) and ignoring cubic and higher order terms,
we rewrite equation (71) to get

1+ %8 + i*2s3 1 — Di* — D(s% + Roy)i*?
y = i*ey +i*e} = | DC! [ +9%(s7+ Ro1 — Zplef +1— Ror)]
i* [+ *2(sf + Ror — %(e’; +1—Rp))]

Comparing equal powers of the perturbation variable i*, we have
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1 8] S5
0 |+ & |+ e
0 1 0
1 =D 'D(ST—FR(}})
0 |+ % +12 | B (8] + Roy — 1Z5{e] + 1 — Rar)]
0 1 31+R01—1Tp§e*{+1—7’301)
We get
s;=-D <0,
. D
e] = —,
¢
s5=—=D(si+Ro),
P
€;= = Silr“l-Rg]_ 1_7)(8; 1—7?,01) 1
ST+ R —L(e*+1—7z )=0
1 01 1—-P 1 01) = V.
At the critical value of P, set Ro; =0, st = —D and e] = —?-. Thus we solve s7 + Ro; —

gﬁ(e; +1—Ro1) = 0 for Peyit.-

DC
Perit = pg—p—¢°

From Table 5, we substitute the values for C and D

b (b+v)(u+7)
it = L+ 02 (w4 ) — e+ v) — po(p + v)

Thus,

p = Bt Nty)
Ccrit vy

o If P > Pt then Ro; < 0 and a backward bifurcation occurs.

o If P < Pqrit then Ro; > 0 and a forward bifurcation occurs.

These results are consistent with Sect. 4.3.
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SEIR model with full recovery

s*=1+i*sj+i"® s5 , Ro = 1+ "Ry +i"* Ry

\

R01<O Rys>0

Figure 60: Blow up of the bifurcation diagram 38. Labels are as in Fig. 26. The critical

value of P for this class is Pcrit = (g + 72%’” + l/).

5.4 The SIR Model with Carrier Class

Consider the ordinary differential equations (57), as discussed in Sect. 4.4. Rescaling

time so that u = 1, equations (57) become

ds

pri l—2zs—3s
di :

o = T Ai

de ¥ .
i q(:t:);z — Be.

See Table 5 for notation. We know from Sect. 4.4 that ¢(z) is a function of z. If we

s
rewrite this in a matrix framework system (65) by setting y = | ¢ |, then we have
c
1 0 0 1—zs
M=104 0 |, fly)= zs
0 0 B q(x)%z
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*

s
At the steady state y* = | ¢* | solves
C*
1 0 0 1—z*s*
y'=M'fly)=]10 41 0 T*s*
0 0 B! q(x*)%i*
. ¥
Setting F = m
s* 1 —z*s*
y'=1 & | =| Alz*st |. (72)
c* q{z* ) Fi*
From Chapter 4, we know that
A*

v = 2 = AR + PC),

We use equation (67) to apply a Taylor expansion using * as the perturbation variable.
In this model, we have the proportion of the carrier class c(t) instead of the proportion
of the exogenous class e(t). Thus, we keep Ro and s* from equation (67) and expand c*,
z* and ¢(z*) to have.

¢ =it + 7 + O(?),

z* =2y + iy + O3
= A (1 + Pct) + %Py + Rop + PR )] + OFE),
g(z*) = z*q + 2% = "7l + P Haiq + 22q) + O).

Ignoring all cubics and higher order terms, we get
T*s* = i*zt + (2} s} + z3),

g(z*)i* = i**ziq,

Substituting the values of 2*s* and ¢(z*)i* in equation (72) to get

1+ i*sy + i*2s 1 —iz¥ — i**z3
¥y = i* = | A7Ye*zy + i*%z)
ey + i Fi*?ziq
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or
1 5% s} 1 -z —{zist + z3)
O |+&| 1 |+ 0 |={0 |+ Alzy |+ A zist + 73)
0 ol Cs 0 0 Fain
where,

z} = A(1 + Pci),
:E; = .A(’PC; + Ro1 + PRo1 C’f)

We now substitute the values of z3 and z% and comparing equal powers of ¢* to have

s = —z7 = —A(l+ Pc}) <0,
c; =0,

S; = —./4[(1 + ,PC,{)S; + PC; + ROI + IPR(HCT],

s5(1+Pc) +Pes + Ry + PRy = 0. (73)

b= FAq(l + Pct).

At the critical value for P, Rg; = 0, and substituting values sj, ¢ and c3, equation
(73) becomes

1
P=—.
Faq
_ 7
We know that F = XL hence
+0
Perit = #q(T
o If P > Pt then Ro1 < 0 and a backward bifurcation occurs.

o If P <Pt then Ro; > 0 and a forward bifurcation occurs.

These results are consistent with Sect. 4.4. This concludes that a backward bifurcation
occurs when Rg; < 1, and for Rg; > 1, a forward bifurcation occurs. These results are
consistent with the carrier class given in Sect. 4.4, and are only valid when ¢(0) = 0 and
¢'(0) = ¢1 > 0 (as discussed in Sect. 4.4). This general analysis only works for functions

such as

T ! Q1
] = ¥ ] =
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Carrier Class

% R e K3 vt
S =1+is1+i2s, Ro=1+1iRo+ 2R

Figure 61: A top-center blow up of Bifurcation diagram 44. Labels are as in Fig. 26. The
+9

critical value for P is P = £ 179
crit = 3@

qg(z) =1-e"",¢(z) = me ™.
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6 Discussion

The infection-free steady state, in the renowned SIR endemic model, is globally stable
for Ro < 1 and unstable for Ro > 1. This gives rise to a forward bifurcation at Ro = 1.
Asymptotic stability in the SIR endemic model shows that there is an infection that per-
sists endemically when Ry > 1. We considered the basic reproduction number R as a
main bifurcation parameter, which has been used to determine the stability of the steady
states of the SIR endemic model. In this thesis we mainly focused on the two and three
dimensional extensions, of the SIR endemic model, for which a backward bifurcation oc-
curs at Ro = 1. For this we chose some reasonable biological factors that lead to the
phenomena of the backward bifurcation, multiple endemic steady states and hysteresis
with some parameter values. We applied analytical and numerical tools to investigate
these phenomena.

Furthermore we presented a general classification of the two and three dimensional
extensions of the SIR endemic model in which we expanded steady state solutions, in
terms of a small perturbation variable ¢*. We used Taylor and Binomial expansions in
order to establish a matrix framework. Moreover, we showed that the results given in the

general classification are consistent with the results deduced in the qualitative approach.

Accordingly in Chapter 1, we gave a brief background of the SIR model and its two
main examples i.e. the SIR epidemic model and the SIR endemic model. In two short
segments Sect. 1.2 and Sect. 1.3 we discussed these examples. We also studied and re-
produced the bifurcation analysis which is done in [12]. In Sect. 1.2, we briefly looked
at the SIR epidemic model while in the Sect. 1.3 we thoroughly investigated the steady
state solutions, their stability and their phase-plane analysis. The purpose of this thesis
is to closely investigate the SIR endemic model and its extensions.

In the extended models we used P as a secondary bifurcation parameter, whose precise
definition differs between the models. In Chapter 2, we examined two dimensional exten-
sions of the SIR endemic model which are: the SIR with a susceptible R class (Sect. 2.1);
non-linear transmission (Sect. 2.2); and exogenous infection (Sect. 2.3). We classified
these models in five steps. Firstly we used a Dulac’s criteria to rule out limit cycles and
then we evaluated the steady state solutions of these models by setting the right-hand
side of the differential equations to zero. Then we found the critical value for P and a
saddle node equation of 7%y which solved for Rg, 44je, the minimum value of R for which
a steady state exists. Thirdly, we linearised the system to find the local stability of these
steady state solutions. We used PPLANE, the numerical program of MATLAB [10] to
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plot bifurcation and phase-plane diagrams for a variety of parameter values given in each
section. We analysed bifurcations and the phase-planes using a threshold parameter R
and a secondary parameter P, adopting the idea from [12]. The secondary parameter P

has different definition for each model.

In Sect. 2.1, we studied a model from [13]. We found that, for Rg > 1, a forward bifur-
cation exists at %o = 1, when there is an unstable infection-free steady state and a unique
endemic steady state independent of P. A backward bifurcation occurs, when a stable
infection-free steady state and multiple endemic steady states exist for Rg, 3416 < Ro < 1

and P > P.rit- This also causes the hysteresis phenomenon.

Usually it is assumed that with nonlinear transmission, we find only a forward bifurca-
tion. Instead we discovered in Sect. 2.2, a function h(z) that depends on the infectives and
satisfies certain biological conditions. We also used a theorem from the paper of Gomes
[6] that fails to prove the existence of any limit cycle for this function. We also observed
that this model exhibits a backward bifurcation and hysteresis phenomena.

In Sect. 2.3, we have investigated a model, introduced by [4], in which the recovered
class is replaced from the exposed class. This model also exhibited the backward bifurca-

tion phenomenon.

Now, in Chapter 3, we applied a general classification for the two dimensional exten-
sions of the SIR endemic model. We investigated the different dynamics applying Taylor
and Binomial expansions by a perturbation variable * near the bifurcation point i.e. near
Ro = 1. We checked if the results at the turning points are consistent with the results

found in Chapter 2.

Chapter 4 took account of three dimensional extensions of the SIR endemic model.
We considered the same strategy as in Chapter 2 except for the following: we cannot use
Dulac’s criteria with the three dimensional differential equations; we linearised the 3 x
3 Jacobian matrices using Maple [5]; we checked the stability using the Routh-Hurwitz
Criteria; and we used ODE45, a numerical package of MATLAB [10], to plot phase-
plane diagrams. These phase-planes plotted, by putting three dimensions onto the two
dimensional projection, hence the trajectories may appear to coincide. We studied four
three dimensional extensions: SEIR model (Sect. 4.1); SEIR model with full recovery
class (Sect. 4.2); SEIR model with partial recovery class (Sect. 4.3); and SIR model with

a carrier class (Sect. 4.4).
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In Sect. 4.1, Sect. 4.2, Sect. 4.3, the models are similar to the two dimensional SIR
model with exogenous infection in Sect. 2.3. These models have a recovered class as well
as the exposed class. Sections 4.2 and 4.3 were proposed in a paper by [14]. We checked
with our qualitative approach that these models are consistent with the techniques used
in [14]. We also proved that these models exhibit backward bifurcation.

In Sect. 4.4, we considered a carrier class instead of exogenous class. In this model
we had a proportion g(z) which is a function of z = ﬁ—(izic) that become carriers. We as-
sumed that for g(z) = 0, ¢/(z) > 0 when z > 0. This assumption led to the two examples
of carrier class; Example 1 had a function g(z) = 1 — %% and; Example 2 had a function
q(z) = z?—iz Example 1 exhibited the same phenomenon i.e. backward bifurcation occurs
at Ro = 1 as in Sect. 4.1, Sect. 4.2, Sect. 4.3. On the other hand, Example 2 exhibited
two backward bifurcations. The bifurcation at Rg = 1 is forward but the locus of steady

state turns backward for some Rg > 1.

Lastly in Chapter 5, we have a similar general classification for three dimensional ex-
tensions as in Chapter 3. We found that these models are consistent with the results we
had deduced in Chapter 4. In Sect. 5.4, we showed that the results are compatible only

for certain function g(z) such as in Example 1.

Finally we conclude that the calculations contained in this thesis will be useful in
developing an understanding of both numerical and analytical methods using MATLAB
[10] and Maple [5] respectively, and our results in Chapters 2 and 4 are consistent with
those in Chapters 3 and 5.
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