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Abstract 
Andesitic volcanoes are notorious for their rapid and unpredictable changes in eruptive 

style between and during volcanic events, a feature normally attributed to shallow-

crustal and intra-edifice magmatic processes. Using the example of eruptions during the 

last 1000 yrs at Mt. Taranaki (the Maero Eruptive Period), deposit sequences were 

studied to (1) understand lava dome formation and destruction, (2) interpret the causes 

of rapid shifts from extrusive to explosive eruption styles, and (3) to build a model of 

crustal magmatic processes that impact on eruption style. 

A new detailed reconstruction of this period identifies at least 10 eruptive episodes 

characterised by extrusive, lava dome- and lava flow-producing events and one sub-

Plinian eruption. To achieve this, a new evaluation procedure was developed to purge 

glass datasets of contaminated mineral-glass analyses by using compositional diagrams 

of mineral incompatible-compatible elements. Along with careful examination of 

particle textures, this procedure can be broadly applied to build a higher degree of 

resolution in any tephrostratigraphic record. Geochemical contrasts show that the 

products of the latest Mt. Taranaki eruption, the remnant summit dome (Pyramid Dome) 

was not formed during the Tahurangi eruptive episode but extruded post-AD1755. Its 

inferred original maximum volume of 4.9×106 m3 (DRE) was formed by simultaneous 

endogenous and exogenous dome growth within days. Magma ascent and extrusion 

rates are estimated at ≥0.012 ms-1 and ≥6 m3s-1, respectively, based on hornblende 

textures. Some of the Maero-Period dome effusions were preceded by a vent-clearing 

phase producing layers of scattered lithic lapilli around the edifice [Newall Ash (a), 

Mangahume Lapilli, Pyramid Lapilli]. The type of dome failure controlled successive 

eruptive phases in most instances. The destruction of a pressurised dome either caused 

instantaneous but short-lived magmatic fragmentation (Newall and Puniho episodes), or 

triggered a directed blast-explosion (Newall episode), or initiated sustained magmatic 

fragmentation (Burrell Episode). The transition from dome effusion to a sustained, sub-

Plinian eruption during the Burrell Lapilli (AD1655) episode was caused by unroofing a 

conduit of stalled magma, vertically segregated into three layers with different degrees 

of vesiculation and crystallisation. The resultant ejecta range from brown, grey and 

black coloured vesicular clasts to dense grey lithics. Bulk compositional variation of 

erupted clasts can be modelled by fractionation of hornblende, plagioclase, 

clinopyroxene, and Fe-Ti oxides. Pre-eruption magma ascent for the Maero Period 

events is assumed to begin at depths of c.9.5 km. 
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images gives analysis number and approximate beam location (black dot). Grey=glass; light 
grey=minerals; black=epoxy. a-b) Tahurangi Ash sample (T04-98) with chemically homogenous glass 
shards but of different texture; a) deformed vesicles, b) dense angular. Note that the presence of large 
minerals (bottom) may alter vesicle distribution. c-d) Newall Ash sample (E02-75) with distinct shard 
textures; glass chemistry of shard (d) is similar to those of scoria-and-ash flow glass shard (c). Note 
regular to irregular vesicles in c). e-f) Burrell Lapilli sample (E03-35) with Taranaki glass shard (f) and 
Taupo volcano-derived glass shard (e), which shows a deformed vesicle. 

Figure 3-13………………………………………………………………………………………………...78 
Glass chemistry of Burrell Lapilli-erupted deposits. The SiO2 vs. K2O diagram shows a general positive 
correlation. Highest mean silica and potassium contents are observed for BAF and surge deposits. The 
crosses represent the 95% confidence interval of the sample mean. The tephra sample E03-35 is bimodal 
containing glass shards with a signature similar to Taupo volcano (or atypical of Taranaki). If foreign 
glass shard analyses are excluded the sample mean is located within the field of BAF/surges (=E03-35’). 
Also included are sample means of a surge deposit pre-dating the Maero Eruptive Period showing a 
rhyolitic glass chemistry. It is noted that one sample (WW19) shows large variations and a bimodal 
sample population. 

Figure 3-14………………………………………………………………………………………………...79 
Comparison of mean sample values of scoria-and-ash flow units (T04-53, T04-56) to pyroclastic pumice 
flow deposits of the Burrell episode (units 1-3) and Puniho Ash, and other Maero deposits (crosses). 
Individual glass shards (small black squares) within deposits, other than T04-53 and T04-56, that have 
compositions similar to scoria-and-ash flows. a) SiO2 vs. K2O, b) CaO vs. FeO. 
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Figure 3-15………………………………………………………………………………………………...80 
Correlation of individual tephra and pyroclastic flow units based on field studies and glass chemistry 
(SiO2 vs. K2O). a) Waingongoro and Waiweranui episodes, b) Newall and Puniho episodes, c) Tahurangi 
and Te Popo episodes. 

Figure 4-1 ………………………………………………………………………………………………….99 
Locations of Holocene volcanic centres in the North Island of New Zealand: Auckland Volcanic Field, 
Taupo Volcanic Zone (TVZ), Tongariro Volcanic Centre (TgVC), Mt. Taranaki. Numbers 1-4 refer to 
distal andesite tephra sites: 1-Onepoto Basin/Pukaki Lagoon/Lake Pupuke (Sandiford et al., 2001; Shane 
and Hoverd, 2002; Shane, 2005), 2-Waikato lakes (Lowe, 1988b), 3-Kaipo Bog (Lowe et al., 1999), 4-
Lake Tutira (Eden and Froggatt, 1996), 5-Lake Poukawa (Shane et al., 2002), 6-Kaimanawa Mts. and 
Ruahine Ranges (Froggatt and Rogers, 1990). 

Figure 4-2 ………………………………………………………………………………………………...104 
Particle textures found in Burrell Lapilli sub-Plinian fall deposits. a) pumice clast, type 1, with clear to 
pale brownish glass; b) hypocrystalline groundmass texture of type 2 clast showing plagioclase, Fe-Ti 
oxide and minor clinopyroxene microlites; c) semi-vesicular type 3 clast with brown groundmass glass, 
large crystals are hornblende; d) for comparison, hypocrystalline groundmass of the present summit dome 
of Mt. Taranaki with abundant microlites of plagioclase, Fe-Ti oxides and minor clinopyroxene. Scale 
bars are in µm. 

Figure 4-3 ………………………………………………………………………………………………...105 
Standard deviations of all major oxides are shown for the original glass EMPA dataset and the glass 
dataset classed as uncontaminated by plagioclase for the Taranaki (a) and Ruapehu (b) samples. A clear 
reduction in SiO2, Al2O3 and CaO variations is observed. See text for further details. All Fe expressed as 
FeO. 

Figure 4-4 ………………………………………………………………………………………………...109 
Bivariate plots of Al2O3 and K2O vs. SiO2 for Burrell Lapilli (Taranaki) and Ruapehu glass data. Data 
points with lowest SiO2 show linear relationship towards mean plagioclase compositions (dashed lines). 

Figure 4-5 ………………………………………………………………………………………………...110 
Bivariate oxide plots for Burrell Lapilli eruption, Taranaki (a-d) and 14. October 1995 eruption, Ruapehu 
(e-f) demonstrate how contaminated glass analyses were identified. Open symbols are classed 
uncontaminated, closed symbols represent hybrid glass-plagioclase analyses. Dashed lines point towards 
mean plagioclase compositions. 

Figure 4-6………………………………………………………………………………………………...114 
The glass evaluation procedure cannot be directly applied to BAF deposits as demonstrated for the Burrell 
Lapilli equivalent BAF deposit. Although data points above a threshold value of 17.9 wt.% Al2O3 clearly 
embrace contaminated glass analyses, the transitional data between 17.1 and 17.9 wt.% Al2O3 cannot be 
uniquely classified. Dashed line points toward mean plagioclase composition. 

Figure 4-7………………………………………………………………………………………………...115 
Glass compositions of Taranaki and TgVC tephras (Lowe 1988b; Lowe et al., 1999; Eden and Froggatt, 
1996 and Shane and Hoverd, 2002) show large variations, here only shown the means and standard 
deviations for K2O and Al2O3. Contaminated plagioclase-glass analyses and/or the analysis of two or 
more particle types may have caused the apparent glass compositional heterogeneity. The small variation 
in the unmodified Burrell Lapilli dataset (Taranaki) is shown for comparison (in grey). 

Figure 5-1………………………………………………………………………………………………...123 
Lava dome types: a) spiny (Rock Mesa ENE, Oregon), b) spiny-lobate (Mt. St. Helens lava dome, 
Washington, July 2004), c) lobate-platy (Big Obsidian Flow, Newberry, Oregon). 
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Figure 5-2………………………………………………………………………………………………...125 
NW sector of Mt. Taranaki showing the main deposition area of Maero BAF deposits. The extent of the 
Tahurangi BAF A is outlined (light grey); unit B is only observed in the Maero Stream and is omitted for 
clarity. The rock-avalanche deposit (RAD) is outlined as observed on aerial photographs from 1959 (mid-
grey) with an additional area based on field observations (dark grey). Contour interval is 20 m. The upper 
right inset shows the general slope inclinations. 

Figure 5-3………………………………………………………………………………………………...127 
Correlation of Tahurangi BAF A and B units and the rock-avalanche deposit across the Pyramid-Maero-
Hangatahua area. The exposures are sorted by stream and planimetric distance from source (filled squares 
in Fig. 5-2). See figure legend for further details (RAD – rock-avalanche deposit). Magnetism was 
measured by a portable fluxgate magnetometer. For clarity, older exposed units were omitted. Outcrop 
numbers and profiles refer to Platz (2001) except S04-133. 

Figure 5-4………………………………………………………………………………………………...129 
The remnant present summit dome. a) hemispherical shape of the dome as viewed from the SE; arrow 
points to a person for scale. Photographed by S.J. Cronin. b) dome amphitheatre as viewed from the W; 
the arrow points to the summit marker (2518 m); the dashed lines mark the hydrothermally altered central 
dome portion. c) northern scar of the amphitheatre showing listric faults. d) the summit marker is a sub-
vertical extrusion penetrating the carapace; note weak columnar jointing; summit marker is highest point 
of the dome. e) orthophotograph of the summit region of Mt. Taranaki; outline shows mapped deposits 
associated with the lava dome; note the blocky lava flow to the N; crosses mark sample locations. f) the 
‘Three Sisters’ (background) mark the NW border of the intra-crater collapse zone with resulting deposit 
still preserved in the crater (foreground). 

Figure 5-5………………………………………………………………………………………………...130 
Black and white photograph taken between 1898 and 1901 showing the fresh bouldery rock-avalanche 
deposit (centre to right). The photograph is taken from the Round-The-Mountain-Track just west of 
Maero Stream from the top of a buried lava ridge. The view is NNW towards Pouakai. Photographed by 
the surveyor H.M. Skeet. 

Figure 5-6………………………………………………………………………………………………...133 
Reconstruction of the Pyramid Dome geometry. a) dashed white line illustrates the former ideal crater 
wall position; the solid line marks the inferred dome outline; the black dot is the assumed vent location at 
the break in slope. b) view of the remnant summit dome from the W. c) top view of the combined 
paraboloid with a composite elliptical base; dimensions of elliptical radii are given. d) side view of the 
inferred dome geometry; the dome remnants are in dark grey; the inferred underlying slope on the upper 
flank is estimated to be c.20°. 

Figure 5-7………………………………………………………………………………………………...135 
Hornblende types. a) type 1 with continuous reaction rim. b) type 2 with discontinuous reaction rim; 
present only in sample SD1; note individual Fe-Ti oxide crystals are visible. c) type 3 partial to fully 
replaced hornblende crystals. d) type 1 with observed brown glass fringing the reaction rim; only 
observed in sample SD6. Scale bar is 100 µm in a) otherwise 25 µm. 

Figure 5-8………………………………………………………………………………………………...136 
Histogram of type 1 hornblende reaction rim thicknesses averaged for crystals and entire samples. 
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Figure 5-9………………………………………………………………………………………………...137 
Hornblende compositions of the summit lava dome, Mt. Taranaki. a) Na+K (A-site) vs. AlIV. b) Mg# vs. 
Si; (c.p.f.–cation per formula unit). For comparison are shown recalculated pargasitic hornblende 
compositions of Unzen volcano, Japan (Sato et al., 1999; Browne et al., 2006; Nakada and Motomura, 
1999) [Unzen matrix refers to groundmass crystals], Soufrière Hills Volcano, Montserrat (Barclay et al., 
1998; Rutherford and Devine, 2003), Mt. St. Helens, USA (Rutherford and Hill, 1993), Colima, Mexico 
(Luhr, 2002) and Cerro la Pilita, Mexico (Barclay and Carmichael, 2004). 

Figure 5-10……………………………………………………………………………………………….138 
Compositions of Fe-Ti oxide phenocrysts and inclusions in clinopyroxene and hornblende. a) Al vs. Ti. b) 
Ti/Al vs. Fe3+# (c.p.f.–cations per formula unit). Cations are calculated on the basis of 32 oxygens. 

Figure 5-11……………………………………………………………………………………………….139 
Glass compositions of inclusions in clinopyroxene and hornblende. Silica is used as differentiation index. 
Note that inclusions in different host minerals form separate groups. 

Figure 5-12……………………………………………………………………………………………….140 
Bulk rock compositions of the summit lava dome and the Tahurangi BAF A and B deposits. Dome 
compositions are distinct to Tahurangi rocks as illustrated for Al2O3 (a), Mg# (b, d) Fe2O3 (e) and Zr (f). 

Figure 5-13……………………………………………………………………………………………….141 
Trace element patterns of the Pyramid Dome and Tahurangi BAF deposits normalised to N-MORB (a) 
and chondrite (b). Pyramid Dome rocks and Tahurangi BAF deposits show nearly identical trace element 
patterns. For the light rare earth elements slightly higher abundances in Tahurangi BAF deposits are 
noted. Normalisation after Sun and McDonough (1989). 

Figure 5-14……………………………………………………………………………………………….142 
Texture of rock sample SD6. a) photograph shows sub-vertical, near parallel crack patterns and cavities. 
b) modified image of a) highlighting cracks and cavities in black. 

Figure 5-15……………………………………………………………………………………………….144 
Lava dome growth patterns are illustrated in a-e. Exogenous and endogenous dome growth occurred 
simultaneously. f) demonstration of the inferred exogenously (dark grey) and endogenously (light grey) 
formed surfaces as observed on the dome remnants. 

Figure 5-16……………………………………………………………………………………………….147 
Reconstruction of the summit dome failure. a) erosion scars on upper flank (white arrows) as well as the 
curvatures of the amphitheatre, and the scars to the SW and S define the geometry of individual collapse 
sectors. b) dome geometry with individual sectors I-IV and their flow directions. c) cross-section of the 
dome showing the dome remnants (grey), and the disintegration of dome rocks along listric faults. 

Figure 5-17……………………………………………………………………………………………….149 
Aluminium-in-hornblende geobarometer shown as histogram for hornblende phenocrysts (core and rim) 
and microphenocrysts. Calculated after Johnson and Rutherford (1989) and corrected by -1.5 kbar. 

Figure 5-18……………………………………………………………………………………………….150 
Comparison of calculated hornblende crystallisation pressures for various Mt. Taranaki rocks and 
xenoliths. Granodiorite xenoliths contain all required mineral phases for the Al-in-hornblende 
geobarometer (Johnson and Rutherford, 1989) and therefore were not corrected. Note that some 
hornblende crystals of hornblende gabbros and hornblende-pyroxene gabbros indicate crystallisation 
below (<1 kbar) the inferred hornblende stability limit. 
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Figure 6-1 ………………………………………………………………………………………………...179 
Mount Taranaki (lower right) has produced mainly lava dome eruptions in the past 800 years with Block-
and-Ash Flow deposits making up the fan between the Maero and Pyramid Stream and in the Hangatahua 
River (BAF – Block-and-Ash Flow, ppf – pumice pyroclastic flow). Star (top left) indicates the most 
distal outcrop discussed in the text. To the NNW of Mt. Taranaki are the south flanks of Pouakai volcano. 
The inset shows the Taranaki peninsula with the Taranaki Volcanic Lineament (SLI-Sugar Loaf Islands, 
K-Kaitake, P-Pouakai, T-Taranaki). Major onshore and offshore faults: IF-Inglewood Fault, MF-Manaia 
Fault, NF-Norfolk Fault, OF-Oanui Fault. Contours are 300 m. Modified after Sherburn and White 
(2005). 

Figure 6-2 ………………………………………………………………………………………………...181 
Variations in bulk vesicularity and connected porosity of single clasts for grey pumice (a), banded pumice 
(b), and black and brown pumice (c). Crosses represent the range in vesicularity per clast using minimum, 
mean and maximum values (see inset in a). Variations in bulk vesicularity refer to single cores cut in two 
(φcore) and overall clast variations with multiple cores (φclast). Note different scale in b). See text for 
details. 

Figure 6-3………………………………………………………………………………………………...183 
Field photographs of a) succession of three pumice pyroclastic flow deposits on the upper south flanks; 
sketch shows a general assembly of pumice types and grey dense lithics, b) grey pumice clasts of unit 3, 
c) eroded surface into unit 2 showing the scattered grey pumice [1] from airfall, brown pumice [2], 
banded pale grey to dark brown pumice [4], and the dense fractured andesite clasts [L]; d) lower contact 
of a distal BAF deposit, c.13.5 km from source (star in Fig. 1). See text for field description. 

Figure 6-4………………………………………………………………………………………………...184 
Distribution of Burrell Lapilli deposits: a) isopachs in cm including the BAF deposit (black) to the NW 
for reference, black squares represent mapping locations for fall deposits only, P-Pouakai, contours 100 
m; b) isopleths for pumice clasts and pumice pyroclastic flow deposits on the upper flanks (black), see 
inset in a) for location; c) isopleths for lithic clasts, same outline as in b). Numbers in b) and c) are clast 
diameters in cm. 

Figure 6-5………………………………………………………………………………………………...187 
Thin-section photographs illustrating basic vesicularity differences of juvenile clasts. a) dense grey lithic, 
b) semi-vesicular black pumice, c) vesicular black pumice with isolated and coalesced vesicles, crosses 
mark plagioclase crystals; d) grey pumice with isolated large single vesicles as well as larger coalesced 
vesicle. Scale bar is 100 µm in a-c and 500 µm in d. See text for details. 

Figure 6-6 ………………………………………………………………………………………………...188 
SEM images of grey (a) and brown (b) pumice (note a and b are binarised; black=vesicles, white=glass + 
crystals); c) shows a large coalesced vesicle; d) consists of three SEM images showing the transition from 
grey to brown in banded pumice. Scale bar is 10 µm in c), otherwise 100 µm. 

Figure 6-7………………………………………………………………………………………………...189 
Hornblende reaction textures in different clast types: a) fresh hornblende with no reaction rims in pumice, 
b) single Fe-Ti oxide crystals are attached to the hornblende rims in black semi-vesicular pumice, c) 
hornblende in dense grey lithic clast shows resorption textures and is partially replaced by clinopyroxene, 
plagioclase and Fe-Ti oxide crystals or is fully replaced (lower left); note abundant plagioclase microlites 
in groundmass. Scale bar is 100 µm. 

Figure 6-8………………………………………………………………………………………………...190 
Bulk rock geochemistry of pumice and grey andesite clasts in a multi element oxide vs. SiO2 diagram. 
The calculated fractionation trend pumice – grey lithics is in good agreement for the majority of clasts 
(solid line) with some variation for the most evolved clast (dashed line). See Table 6-3 for details. 
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Fig. 6-9…………………………………………………………………………………………………...194 
Groundmass glass compositions of pumice types presented in the Al2O3 vs. SiO2 diagram. Modelled glass 
composition changes due to plagioclase and clinopyroxene crystallisation (thick solid line) and is in good 
agreement with linear regression line (thin solid line). The small inset shows six data points of one 
lapillus (SD20) demonstrating relative glass homogeneity. The dimensions of the box are 1 wt. % for 
Al2O3 and SiO2. 

Figure 6-10……………………………………………………………………………………………….196 
Connected porosity vs. bulk vesicularity of all pumice types. Brackets represent 95% confidence limit for 
the mean of each pumice population. Solid lines represent 0% and 10% and dashed line 5% isolated pore 
volume. 

Figure 6-11……………………………………………………………………………………………….197 
Connected and bulk vesicularity vs. permeability. a) data of this study with upper and lower data limits 
(black lines) of y=5×10-19 x-4.5314 and y=6×10-21 x-4.5314, respectively. Note there are six specimens with 
three cores cut in three mutually perpendicular directions. Upper inset shows cores cut in two 
perpendicular directions. b) comparison of our data with published literature: Montserrat (Melnik and 
Sparks, 2002), Big and Little Glass Mountains (Rust and Cashman, 2004), Pichincha (Wright et al., 
2007); grey lines are limits of Klug and Cashman (1996). 

Figure 6-12……………………………………………………………………………………………….202 
Reconstruction of eruptive events during the Burrell Lapilli eruption. Changes in bulk rock silica contents 
are illustrated in Stage a. Bubble nucleation levels 1-3 correspond with erupted units 1-3. See text for 
further details. 

Figure 6-13……………………………………………………………………………………………….213 
Correlation of pyroclastic flow deposits associated with the Burrell episode. Note that the major unit from 
medial to distal represents the Burrell Breccia (A). In section S04-133, the thin pyroclastic pumice flow 
deposits represent Burrell Breccia (B) units 1-3. Exposures are sorted by stream and planimetric distance 
from source. See figure legend for further details (RAD – rock-avalanche deposit). Magnetism was 
measured by a portable fluxgate magnetometer. For clarity, older exposed units were omitted. Outcrop 
numbers and profiles refer to Platz (2001) except S04-133. For list of samples and coordinates of outcrops 
see Appendix B. 

Figure 6-14……………………………………………………………………………………………….215 
Estimates of total water and carbon dioxide contents in melt inclusions. a) total H2O at 3550 cm-1 vs. 
molecular H2O at 1630 cm-1, and b) molecular CO2 at 2350 cm-1 vs. total H2O at 3550 cm-1. 

Figure 6-15……………………………………………………………………………………………….216 
Different shapes of melt inclusions in clinopyroxene. a) overview of crystal 2 (sample SD20); note the 
many inclusions of glass, plagioclase, apatite and Fe-Ti oxide which are mostly oriented along 
crystallographic planes, b) two close-ups as marked in a); I - represents common but very small melt 
inclusions found in clinopyroxene, which are unsuitable for FTIR analysis. Their shape is near spherical 
to ovate; II - the bottle-neck shape is typical for leaked melt inclusions, c) overview of crystal 11 (sample 
SD32) showing a large irregular shaped melt inclusion, d) close-up of c) showing the impossibility of 
using these inclusions for FTIR analysis; it can be assumed that the inclusion extends further into the 
crystals as indicated by the diffuse outline of the melt inclusions further to the right, e) section of crystal 4 
(sample SD20) showing two types of melt inclusions, the reddish-brown coloured inclusions are probably 
altered in comparison to the brown inclusions to the right; note again the irregular outline of the 
inclusions, f) section of crystal 8 (sample SD9D); abundant sheet-like inclusions probably oriented along 
crystallographic planes; the inclusions around the Fe-Ti oxide inclusions (black) appear to be connected. 
Scale bars are 100 µm in a), c), and e), 50 µm in d) and f), and 10 µm in b). 
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Figure 6-16……………………………………………………………………………………………….218 
Preliminary results of the thermal analysis studies. a) trial and error series of sample SD20, b) 
reproducibility results of different pumice samples; it is noted that for the same sample the maximum 
weight loss is often observed at similar temperatures. 

Figure 7-1………………………………………………………………………………………………...229 
Groundmass texture (a-d) and crystallinity (e-h) of clasts from pyroclastic flow deposits. a and c) two 
groundmass glasses, b-d) differences in degree of groundmass crystallisation in clear translucent and 
brown glasses, e) semi- to hyaline, clear translucent glass; note microvesicularity, f) same image as in e) 
under crossed polarised light, g) semi- to holocrystalline brown glass, h) same image as in g) under 
crossed polarised light. 

Figure 7-2………………………………………………………………………………………………...231 
Bulk rock composition of selected Maero eruptives. Block-and-Ash Flow deposits are not differentiated 
and the Pyramid Dome and the Turtle are omitted for clarity. For comparison, selected lava flows of the 
upper main cone and Fanthams Peak are plotted. Mg#=100[Mg2+/(Mg2++Fe2+)]; all iron as Fe2+. 

Figure 7-3………………………………………………………………………………………………...233 
Analytical totals of all EMP glass analyses (a) and sample averages (b) are plotted against silica content. 
Estimated glass water contents using the water-by-difference method (WBD) are shown on the right axis. 
The terms andesite, dacite, and rhyolite refer to the TAS-classification scheme of Le Maitre et al. (1989). 

Figure 7-4………………………………………………………………………………………………...236 
Calculated melt viscosities, η, are plotted against silica abundances. Values of the models of Shaw (1972) 
and Hui and Zhang (2007) are shown for H2O contents of 0.1 wt.%, 1 wt.% and WBD at T=900 °C and 
P=1 bar. Solid and dashed lines are regression lines of η at WBD for the Hui-and-Zhang- and Shaw-
models, respectively. 

Figure 7-5………………………………………………………………………………………………...237 
Calculated magma viscosities, ηa, are plotted against SiO2 contents. Lower and upper crystal volume 
fractions of 30% (a) and 55% (b), respectively are used for the calculation based on the calculated melt 
viscosities (see Fig. 7-4). Viscosities are calculated using H2O contents of 0.1 wt.%, 1 wt.% and WBD at 
constant T=900 °C and P=1 bar. Solid and dashed lines are regression lines of ηa at WBD for the Hui-
and-Zhang- and Shaw-models, respectively. 

Figure 7-6………………………………………………………………………………………………...238 
Bulk SiO2 contents (a) and Mg# (b) are plotted against K2O in chronological appearance of eruption 
episodes. 

Figure 7-7………………………………………………………………………………………………...241 
Calculated Mt. Taranaki melt viscosities are compared to calculated melt viscosities of Merapi volcano 
(Indonesia), Soufrière volcano (St. Vincent), and Soufrière Hills Volcano (Montserrat), using the same 
parameters. Solid lines are regression lines for Taranaki data. 
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Figure 7-8………………………………………………………………………………………………...242 
Calculated Mt. Taranaki magma viscosities plotted against SiO2 are compared to other andesite to rhyolite 
volcanoes. Since Taranaki viscosity calculations are based on glass chemical compositions of the Maero 
Eruptive Period, the range in bulk silica contents of rocks erupted during this period are used to allow 
comparison to published data. Upper and lower viscosity abundances are taken from Fig. 7-5. Taranaki 
data are illustrated by two parallelograms with upper and lower limits representing crystal volume 
fractions of 55% and 30%, respectively. The grey parallelogram corresponds to 1 wt.% melt water 
content, whereas the dashed parallelogram relates to water contents determined by WBD. Data source: 
silicic lava flows (Murase and McBirney, 1973; Fink, 1980; Navarro-Ochoa et al., 2002; Manley, 1996; 
Harris et al., 2004; and McKay et al., 1998); Mt. St. Helens (Murase et al., 1985; Scandone and Malone, 
1985); Unzen volcano (Suto et al., 1993; Goto, 1999; Sato et al., 1999); Soufrière Hills Volcano, 
Montserrat (Voight et al., 1999; Sparks et al., 2000); Soufrière volcano, St. Vincent (Huppert et al., 
1982); Merapi volcano (Siswowidjoyo et al., 1995). 
 




