Amelioration of the Impact of Physical Fatigue on Cognitive Performance by Phytochemicals: The Effect of a Blackcurrant Supplement

A thesis presented in partial fulfilment of the requirements for the degree of

Masters of Science in Psychology

at Massey University, Manawatu, New Zealand

U`Nita Harold

2016

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Abstract

Exercise-induced physical fatigue is thought to impair the cognitive functioning, and therefore mental performance, of the brain. Intervention studies have demonstrated that phytochemical supplementation can facilitate improved cognitive and physical performance. However, little is known about phytochemical supplementations' ability to ameliorate physical fatigue effects on cognitive performance upon congestion. To investigate this hypothesis, the present study investigated the effects phytochemical compounds, from a blackcurrant supplement, had in regards to reducing physical fatigue effects on cognitive performance while under mental loads. Seventy-two healthy participants completed >10 mins of a high intensity intermittent cycling task (HIIT) (physical fatigue cohort) or >10 mins watching an emotionally neutral documentary (control cohort). Half of the participants in each condition received a blackcurrant supplement one hour before beginning the experimental session. Baseline cognitive tasks and mood questionaries were completed before ingestion of a blackcurrant extract, again before post-task measurements were completed, and also immediately following the experimental session. Analysis of the subjective selfreports revealed that HIIT was successful at inducing physical fatigue, however, had no effect on subsequent cognitive performance. Further analyses demonstrated that supplementation with a blackcurrant extract had no influence on cognitive performance. The null results for an effect of physical fatigue on cognitive performance made interpretation of this finding difficult. Overall, effect size calculations indicated that a larger sample size would not have resulted in statistically significant findings. It was concluded that the specific high intensity intermittent exercise used in the present study, did not induce a level of fatigue in participants' that would subsequently impair cognitive performance. Blackcurrant supplement did not demonstrate an ability to enhance cognitive performance following a physically fatiguing task. Possible explanations for these findings are discussed and some potentially useful future studies outlined in the second and third chapters.

Acknowledgements

I would like to express my immense gratitude and appreciation to the New Zealand Institute of Plant and Food Research, specifically Greg Sawyer, Dominic Lomiwes, Suzanne Hurst, who provided immense guidance, commitment and support in developing and conducting the research design. Thank you also for your financial contributions, the loan of the exercise equipment and laboratory equipment, the development of the blackcurrant capsules and your assistance in running the participant trials, without your help this experiment would have carried on for many extra weeks.

I would also like to express my thanks to my research supervisor, Assoc. Prof John Podd, who provided vast knowledge and guidance throughout the entire research project. Thank you also for your assistance and advice with the data analysis and write up phase.

I would like to convey my thanks to Malcolm Loudon for his technical contribution to the research, from his development and creation of the battery of cognitive tasks on the computer.

I would also like to express the enormous gratitude I have for my friends and family for their continuous support and encouragement, especially my fiancé Karl Roberts, whose unwavering love and support encouraged me to the finish line. Equally to my person Fiona Johnston, whose steadfast belief in my me ensured that I crossed this marathon.

Finally, I would like to thank each and everyone of my participants' who volunteered their time, and for some, enormous energies to participate in the research. Without your contribution this would not have been possible.

Table of Contents

Abstract	2
Acknowledgements	3
Table of	
Contents	5
List of	
Figures	9
List of	
Tables	10
Chapter 1:	
Background	11
Chapter 2: Phytochemicals and COGNITIVE PERFORMANC	E17
What are	
phytochemicals	16
Molecular mechanisms underlying phytochemical influence	18
Potential public health benefits from phytochemicals	20
Phytochemical rich food: benefits to cognitive performance	25
Berry fruit phytochemicals and cognitive improvement	30
Methodological differences in phytochemical research	33
Summary	33
Chapter 3: Exercise and COGNITIVE PERFORMANCE	35
Theoretical Models of the Interaction in the Exercise-Cognition	
Relationship	41
Methodological differences among previous research	42
Exercise induced fatigue & subsequent cognitive performance	44
Physiological explanations of the exercise-cognition relationship	47
Summary	48

The present	
study	49
Hypothesis one	50
Hypothesis two	52
Chapter 4: Methodology	54
Participants	54
Group assignment	54
Apparatus and Measures	55
Cognitive tasks	55
Stroop	55
Digit Symbol Substitution	56
Digit Span Backwards	57
Trail Making Task (B)	58
Choice Reaction Time Task	59
Subjective Measures	59
Mental and Physical State and Trait Energy and Fatigue	
Scales	60
Ratings of Perceived Exertion	60
Baeke Questionnaire and Health Screening	61
Heart Rate Measure	61
Lactate Measure	61
Treatments	61
Exercise induced fatigue manipulation	61
Control Task	62
Phytochemical Manipulation	62
Blackcurrant extract	62
Design and Analysis	62
Procedure	63
Familiarisation	64

Main Trial	65
First stage	65
Second stage	65
Third stage-Exercise- session	66
Fourth stage	
Control Session	66
Fifth Stage-Debrief	67
Chapter 4: Results	68
Fatigue Manipulation	68
Stroop- Overall	69
Stroop-Congruent	69
Stroop-Noncongruent	70
Digit Span Backwards	70
Digit Symbol Substitution	71
Trail Making Task (B)	73
Choice Reaction Time Task	73
Summary	74
Chapter 6: Discussion	75
Inducing Physical Fatigue	77
Hypothesis One: Physical Fatigue Impairs Subsequent (Cognitive
Performance	77
Hypothesis Two: Blackcurrant Supplement Ameliorates	the Effects
of Fatigue on Cognitive Performance	90
Limitations	94
Conclusions	97
References	
Appendices	118
Appendix A: Advertisement Flyer	119

Appendix B: Mental & Physical State and Trait Energy ar	10
Fatigue	
Scale	120
Appendix C: Health Screening Form	128
Appendix D: Information Sheet	131
Appendix E: Baeke Habitual Physical Activity	
Questionnaire	140
Appendix F: Ratings of Perceived Exertion	144
Appendix G: Consent Form	145
Appendix H: List of Foods to Avoid	147
Appendix I: ANCOVA Between Subjects Tests Tables	148

List of Figures

Figure 1: Visual representation of the Yerks & Dodson's inverted	U-
hypothesis	.39
Figure 2: Visual representation of the Stroop task	.51
Figure 3: Visual representation of the Digit Symbol Substitution	.52
Figure 4: Visual representation of the Digit Span Backwards	.53
Figure 5: Visual representation of the Trail Making Test (B)	54
Figure 5: Visual representation of the Choice Reaction Time Task	.55
Figure 6: Interaction between condition and intervention for digit span	
backwards	.69
Figure 7: Interaction between condition and intervention for Digit	
Symbol Substitution	.72

List of Tables

Table 1: Group assignment in accordance to gender and	
condition	
Table 2: Adjusted means, standard errors (in parentheses) and 95%	
confidence intervals for Stoop (overall)	
Table 3: Adjusted means, standard errors (in parentheses) and 95%	
confidence intervals for Stroop (congruent))
Table 4: Adjusted means, standard errors (in parentheses) and 95%	
confidence intervals for Stroop (non congruent)70)
Table 5: Adjusted means, standard errors (in parentheses) and 95%	
confidence intervals for Digit Span Backwards70)
Table 6: Adjusted means, standard errors (in parentheses) and 95%	
confidence intervals for Digit symbol substitution71	l
Table 7: Adjusted means, standard errors (in parentheses) and 95%	
confidence intervals for Trail Making Task (B)73	
Table 8: Adjusted means, standard errors (in parentheses) and 95%	
confidence intervals for Choice Reaction Time Task73	