• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Journal Articles
    • View Item
    •   Home
    • Massey Documents by Type
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crawfish shell- and Chinese banyan branch-derived biochars reduced phytoavailability of As and Pb and altered community composition of bacteria in a contaminated arable soil.

    Icon
    View/Open
    Icon
    10.1016/j.scitotenv.2022.161284
    Open Access Location
    https://www.sciencedirect.com/science/article/pii/S0048969722083887
     
    Abstract
    Globally, soil contamination with arsenic (As) and lead (Pb) has become a severe environmental issue. Herein, a pot experiment was conducted using pak choi (Brassica chinensis L.) to investigate the effects of biochars derived from Crawfish shell (Procambarus clarkia) (CSB) and branches of Chinese banyan (Ficus microcarpa) (CBB) on the phytoavailability of As and Pb, and bacterial community composition in soils. Our results showed that the application of CSB and CBB decreased the concentrations of DTPA-extractable Pb in soils ranging from 26.8 to 28.8 %, whereas CSB increased the concentration of NH4H2PO4-extractable As in soils, compared to the control. Application of both biochars reduced the uptake of As and Pb in the edible part of pak choi. In addition, application of CBB significantly (P < 0.05) increased the activities of α-glucosidase, β-glucosidase, fibro disaccharide hydrolase, and acid phosphomonoesterase by 55.0 %, 54.4 %, 195.1 %, and 76.7 %, respectively, compared to the control. High-throughput sequencing analysis revealed that the predominant bacteria at the phyla level in both biochar-treated soils were Firmicutes, Proteobacteria, and Actinobacteriota. Redundancy and correlation analyses showed that the changes in bacterial community composition could be related to soil organic carbon content, As availability, and nutrient availability in soils. Overall, the tree brunch biochar was more suitable than the crawfish shell biochar as a potential amendment for the remediation of soils co-contaminated with As and Pb.
    Citation
    Sci Total Environ, 2022, pp. 161284 - ?
    Date
    2022-12-29
    Author
    Gu, S
    Yang, X
    Chen, H
    Jeyakumar, P
    Chen, J
    Wang, H
    Description
    CAUL read and publish agreement 2023
    Collections
    • Journal Articles
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1